

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

SPG-Separation Axioms

S. Balasubramanian*1, C. Sandhya²

*1Department of Mathematics, Govt. Arts College(A), Karur – 639 005, Tamilnadu, India 2Department of Mathematics, C.S.R. Sarma College, Ongole 523 001, Andhrapradesh, India mani55682@rediffmail.com

Abstract

In this paper we discuss new separation axioms using spg-open sets **Mathematics Subject Classification Number**: 54D10, 54D15.

Keywords: Spg Spaces

Introduction

Norman Levine introduced generalized closed sets in 1970. After him various Authors [1-18; 20-29] studied different versions of generalized sets and related topological properties. Recently V.K. Sharma and the author of the present paper defined separation axioms for g-open; gs-open; sg-open; rg-open sets and studied their basic properties.. Throughout the paper a space X means a topological space (X,τ) . For any subset A of X its complement, interior, closure, spg-interior, spg-closure are denoted respectively by the symbols A^c , A^o , cl(A), spg-int(A) and spg-cl(A).

Definition 1.1: $A \subset X$ is called

- (i) regularly open if A = int(cl(A)) and regularly closed if A = cl(int(A)).
- (ii) semi-open if there exists an open set U such that $U \subseteq A \subseteq cl(U)$.
- (iii) generalized closed[resp: regular generalized; generalized regular]{briefly: g-closed; rg-closed; pg-closed}if cl{A}⊆U whenever A⊆U and U is open[resp: regular open, open] and generalized[resp: regular generalized; generalized regular] open if its complement is generalized[resp: regular generalized; generalized regular] closed.

Note 1: The class of regular open sets, open sets, g-open sets and spg-open sets are denoted by RO(X), $\tau(X)$, GO(X) and SPGO(X) respectively. Clearly $RO(X) \subset \tau(X) \subset GO(X) \subset PGO(X)$.

Note 2: For $A \subset X$, $A \in PGO(X, x)$ means A is a generalized regular-open neighborhood of X containing x.

Definition 1.3: ACX is called clopen[resp: nearly-clopen; semi-clopen; g-clopen; spg-clopen] if it is both open[resp: regular-open; semi-open; g-open; spg-open] and closed[resp: regular-closed; semi-closed; g- closed; spg-closed]

ISSN: 2277-9655 Impact Factor: 1.852

Definition 1.4: A function $f: X \to Y$ is said to be

- (i) Continuous [resp: nearly continuous, semi-continuous] if inverse image of open set is open[resp: regular-open, semi-open]
- (ii) g-continuous [resp: spg-continuous] if inverse image of closed set is g-closed [resp: spg-closed]
- (iii) irresolute [resp: nearly irresolute, spg-irresolute] if inverse image of semi-open [resp: regular-open, spg-open] set is semi-open [resp: regular-open, spg-open]
- (iv) g-irresolute [resp: spg-irresolute; sg-irresolute] if inverse image of g-closed [resp: spg-closed, sg-closed] set is g-closed [resp: spg-closed; sg-closed]
- (v) open [resp: nearly open, semi-open] if the image of open set is open [resp: regular-open, semi-open]
- (vi) g-open [resp: spg-open] if the image of open set is g-open [resp: spg-open]
- (vii) homeomorphism [resp: nearly homeomorphism, semi-homeomorphism] if f is bijective, continuous [resp: nearly-continuous, semi-continuous] and f^{-1} is continuous[resp: nearly-continuous, semi-continuous]
- (viii) rc-homeomorphism [resp: sc-homeomorphism] if f is bijective r-irresolute [resp: irresolute] and f^1 is r-irresolute [resp: irresolute]
- (ix) g-homeomorphism [resp: spg-homeomorphism] if f is bijective g-continuous [resp: spg-continuous] and f^{-1} is g-continuous [resp: spg-continuous]
- (x) gc-homeomorphism [resp: spgc-homeomorphism] if f is bijective g-irresolute [resp: spg-irresolute] and f^{-1} is g-irresolute[resp: spg-irresolute]

Definition 1.5: X is said to be

- (i) compact [resp: nearly compact, semi-compact, g-compact, spg-compact] if every open[resp: regular-open, semi-open, g-open, spg-open] cover has a finite sub cover.
- (ii) T_0 [resp: rT_0 , sT_0 , g_0] space if for each $x \neq y \in X$ \exists $U \in \tau(X)$ [resp: RO(X); SO(X); GO(X)] containing either x or y.
- (iii) T_1 [resp: rT_1 , sT_1 , g_1] space if for each $x \neq y \in X \exists U$, $V \in \tau(X)$ [resp: RO(X); SO(X); GO(X)] such that $x \in U V$ and $y \in V U$.
- (iv) T_2 [resp: rT_2 , sT_2 , g_2] space if for each $x \neq y \in X \exists U$, $V \in \tau(X)$ [resp: RO(X); SO(X); GO(X)] such that $x \in U$; $y \in V$ and $U \cap V = \phi$.
- (v) $T_{1/2}$ [resp: $rT_{1/2}$, $pT_{1/2}$] if every generalized [resp: regular generalized, pre-generalized] closed set is closed [resp: regular-closed, pre-closed]

Spg-Continuity and Product Spaces

Theorem 2.1: Let Y and $\{X_{\alpha}: \alpha \in I\}$ be Topological Spaces. Let $f: Y \to \Pi X_{\alpha}$ be a function. If f is spgcontinuous, then $\pi_{\alpha} \bullet f: Y \to X_{\alpha}$ is spg-continuous.

Proof: Suppose f is spg-continuous. Since π_{α} : $\Pi X_{\beta} \rightarrow X_{\alpha}$ is continuous for each $\alpha \in I$, it follows that $\pi_{\alpha} \bullet f$ is spg-continuous.

Converse of the above theorem is not true in general.

Theorem 2.2: If Y is $rT_{1/2}$ and $\{X_{\alpha}: \alpha \in I\}$ be Topological Spaces. Let $f: Y \to \Pi X_{\alpha}$ be a function, then f is spgcontinuous iff $\pi_{\alpha} \bullet f: Y \to X_{\alpha}$ is spg-continuous.

Corollary 2.3: Let f_{α} : $X_{\alpha} \to Y_{\alpha}$ be a function and let f: $\Pi X_{\alpha} \to \Pi Y_{\alpha}$ be defined by $f(x_{\alpha})_{\alpha \in I} = (f_{\alpha}(x_{\alpha}))_{\alpha \in I}$. If f is spg-continuous then each f_{α} is spg-continuous.

Corollary 2.4: For each α , let X_{α} be $rT_{1/2}$ and let f_{α} : $X_{\alpha} \rightarrow Y_{\alpha}$ be a function and let f: $\Pi X_{\alpha} \rightarrow \Pi Y_{\alpha}$ be defined by $f(x_{\alpha})_{\alpha \in I} = (f_{\alpha}(x_{\alpha}))_{\alpha \in I}$, then f is spg-continuous iff each f_{α} is spg-continuous.

$Spg_i Spaces i = 0, 1, 2$

Definition 3.1: X is said to be

- (i) a spg_0 space if for each pair of distinct points x, y of X, there exists a spg-open set G containing either of the point x or y.
- (ii) a spg₁ space if for each pair of distinct points x, y of X there exists a spg-open set G containing x but not y and a spg-open set H containing y but not x.
- (iii)a spg₂ space if for each pair of distinct points x, y of X there exists disjoint spg-open sets G and H such that G containing x but not y and H containing y but not x.

Note 2: X is $spg_2 \rightarrow X$ is $spg_1 \rightarrow X$ is spg_0 .

Example 3.1: Let $X = \{a, b, c\}$ and

(i) $\tau = \{\phi, \{a, c\}, X\}$ then X is spg_i but not rT_0 and T_0 , i = 0, 1, 2.

ISSN: 2277-9655 Impact Factor: 1.852

(ii) $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ then X is not spg_i for i = 0, 1, 2.

Remark 3.1: If X is $pT_{1/2}$ then pT_i and spg_i are one and the same for i = 0,1,2.

Theorem 3.1:

- (i) Every [resp: regular open] open subspace of spg_i space is spg_i for i=0,1,2.
- (ii) The product of spg_i spaces is again spg_i for i = 0, 1, 2.
- (iii) spg-continuous image of T_i spaces is spg_i for $i=0,\,1,\,2$.
- (iv) spg-continuous image of rT_i spaces is spg_i for i=0, 1, 2.

Theorem 3.2:

- (i) X is spg_0 iff $\forall x \in X$, $\exists U \in SPGO(X)$ containing x such that the subspace U is spg_0 .
- (ii) X is spg_0 iff distinct points of X have disjoint spg-closures.

Theorem 3.3: The following are equivalent:

- (i) X is spg₁.
- (ii) Each one point set is spg-closed.
- (iii)Each subset of X is the intersection of all spg-open sets containing it.
- (iv) For any $x \in X$, the intersection of all spg-open sets containing the point is the set $\{x\}$.

Theorem 3.4: If X is spg_1 then distinct points of X have disjoint spg-closures.

Theorem 3.5: Suppose x is a spg-limit point of a subset of A of a spg_1 space X. Then every neighborhood of x contains infinitely many distinct points of A.

Theorem 3.6: X is spg₂ iff the intersection of all spg-closed, spg-neighborhoods of each point of the space is reduced to that point.

Proof: Let X be spg_2 and $x \in X$, then for each $y \neq x$ in X, \exists U, $V \in \operatorname{SPGO}(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \phi$. Since $x \in U - V$, hence X-V is a spg-closed, spgneighborhood of x to which y does not belong. Consequently, the intersection of all spg-closed, spgneighborhoods of x is reduced to $\{x\}$.

Conversely let $y \neq x$ in X, then by hypothesis there exists a spg-closed, spg-neighborhood U of x such that $y\notin U$. Now $\exists G\in SPGO(X)$ such that $x\in G\subset U$. Thus G

and X-U are disjoint spg-open sets containing x and y respectively. Hence X is spg₂

Theorem 3.7: If to each point $x \in X$, there exist a spg-closed, spg-open subset of X containing x which is also a spg_2 subspace of X, then X is spg_2 .

Proof: Let $x \in X$, U a spg-closed, spg-open subset of X containing x and which is also a spg₂ subspace of X, then the intersection of all spg-closed, spg-neighborhoods of x in U is reduced to $\{x\}$. U being spg-closed, spg-open, these are spg-closed, spg-neighborhoods of x in X. Thus the intersection of all spg-closed, spg-neighborhoods of x is reduced to $\{x\}$. Hence by Theorem 3.6, X is spg₂.

Theorem 3.8: If X is spg_2 then the diagonal Δ in X×X is spg-closed.

Proof: Let $(x, y) \in X \times X - \Delta$, then $x \neq y$. Since X is $spg_2 \exists U$; $V \in SPGO(X)$ such that $x \in U$; $y \in V$ and $U \cap V = \phi$. $U \cap V = \phi$ implies $(U \times V) \cap \Delta = \phi$ and therefore $(U \times V) \subset X \times X - \Delta$. Further $(x, y) \in (U \times V)$ and $(U \times V)$ is spgopen in $X \times X$ gives $X \times X - \Delta$ is spgopen. Hence Δ is spgolosed.

Theorem 3.9: In spg₂-space, spg-limits of sequences, if exists, are unique.

Theorem 3.10: In a spg₂ space, a point and disjoint spg-compact subspace can be separated by disjoint spg-open sets.

Proof: Let X be a $\operatorname{spg_2}$ space, $x \in X$ and C a $\operatorname{spg-compact}$ subspace of X not containing x. Let $y \in C$ then for $x \neq y$ in X, there exist disjoint $\operatorname{spg-open}$ neighborhoods G_x and H_y . Allowing this for each y in C, we obtain a class $\{H_y\}$ whose union covers C; and since C is $\operatorname{spg-compact}$, some finite subclass $\{H_i, i = 1 \text{ to } n\}$ covers C. If G_i is $\operatorname{spg-neighborhood}$ of x corresponding to H_i , we put $G = \bigcup_{i=1} nG_i$ and $G_i = \bigcap_{i=1} nG_i$ and $G_i = \bigcap_{i=1} nG_i$ satisfying the required properties.

Corollary 3.1:

- (i) In a T_1 [resp: rT_1 ; g_1] space, each singleton set is spg-closed.
- (ii) If X is T_1 [resp: rT_1 ; g_1] then distinct points of X have disjoint spg-closures.
- (iii)If X is T_2 [resp: rT_2 ; g_2] then the diagonal Δ in X×X is spg-closed.
- (iv) Show that in a T_2 [resp: rT_2 ; g_2] space, a point and disjoint compact[resp: nearly-compact; g-compact] subspace can be separated by disjoint spg-open sets

Theorem 3.11: Every spg-compact subspace of a spg_2 space is spg-closed.

Proof: Let C be spg-compact subspace of a spg_2 space. If x be any point in C^c , by above Theorem x has a spg-

neighborhood G such that $x \in G \subset C^c$. This shows that C^c is the union of spg-open sets and therefore C^c is spg-open. Thus C is spg-closed.

ISSN: 2277-9655 Impact Factor: 1.852

Corollary 3.2: Every compact [resp: nearly-compact; g-compact] subspace of a T₂ [resp: rT₂; g₂] space is spg-closed.

Theorem 3.12: If $f: X \rightarrow Y$ is injective, spg-irresolute and Y is spg_i then X is spg_i, i = 0, 1, 2.

Proof: Let $x \neq y \in X$, then \exists a spg-open set $V_x \subset Y$ such that $f(x) \in V_x$ and $f(y) \notin V_x$ and \exists a spg-open set $V_y \subset Y$ such that $f(y) \in V_y$ and $f(x) \notin V_y$ with $f(x) \neq f(y)$. By spg-irresoluteness of f, $f^{-1}(V_x)$ is spg-open in X such that $x \in f^{-1}(V_x)$; $y \notin f^{-1}(V_x)$ and $f^{-1}(V_y)$ is spg-open in X such that $y \in f^{-1}(V_y)$; $x \notin f^{-1}(V_y)$. Hence X is $x \in Y$

Similarly one can prove the remaining part of the Theorem.

Corollary 3.3:

- (i) If $f: X \rightarrow Y$ is injective, spg-continuous and Y is T_i then X is spg_i , i = 0, 1, 2.
- (ii) If $f: X \rightarrow Y$ is injective, r-irresolute[r-continuous] and Y is rT_i then X is spg_i , i = 0, 1, 2.
- (iii)The property of being a space is spg₀ is a spg-Topological property.
- (iv) Let $f: X \to Y$ is a spgc-homeomorphism, then X is spg_i if Y is spg_i , i = 0, 1, 2.

Theorem 3.13: Let X be T_1 and $f: X \to Y$ be spg-closed surjection. Then X is spg_1 .

Theorem 3.14: Every spg-irresolute map from a spg-compact space into a spg₂ space is spg-closed.

Proof: If $f: X \to Y$ is spg-irresolute where X is spg-compact and Y is spg₂. Let $C \subset X$ be closed, then $C \subset X$ is spg-closed and hence C is spg-compact and so f(C) is spg-compact. But then f(C) is spg-closed in Y. Hence the image of any spg-closed set in X is spg-closed set in Y. Thus f is spg-closed.

Theorem 3.15: Any spg-irresolute bijection from a spg-compact space onto a spg_2 space is a spgc-homeomorphism.

Proof: Let $f: X \to Y$ be a spg-irresolute bijection from a spg-compact space onto a spg₂ space. Let G be a spg-open subset of X. Then X-G is spg-closed and hence f(X-G) is spg-closed. Since f is bijective f(X-G) = Y-f(G). Therefore f(G) is spg-open in Y. This means that f is spg-open. Hence f is bijective spg-irresolute and spg-open. Thus f is spgc-homeomorphism.

Corollary 3.4: Any spg-continuous bijection from a spg-compact space onto a spg₂ space is a spg-homeomorphism.

Theorem 3.16: The following are equivalent:

- (i) X is spg₂.
- (ii) For each pair $x \neq y \in X \exists a \text{ spg-open, spg-closed set } V \text{ such that } x \in V \text{ and } y \notin V, \text{ and }$
- (iii)For each pair $x \neq y \in X \exists f: X \rightarrow [0, 1]$ such that f(x) = 0 and f(y) = 1 and f is spg-continuous.

Theorem 3.17: If $f: X \to Y$ is spg-irresolute and Y is spg_2 then

- (i) the set $A = \{(x_1, x_2): f(x_1) = f(x_2)\}$ is spg-closed in $X \times Y$
- (ii)G(f), Spgaph of f, is spg-closed in $X \times Y$.

Proof: (i) Let $A = \{(x_1, x_2): f(x_1) = f(x_2)\}$. If $(x_1, x_2) \in X \times X - A$, then $f(x_1) \neq f(x_2) \Rightarrow \exists$ disjoint V_1 and $V_2 \in SPGO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$, then by spg-irresoluteness of f, $f^1(V_j) \in SPGO(X, x_j)$ for each j. Thus $(x_1, x_2) \in f^1(V_1) \times f^1(V_2) \in SPGO(X \times X)$. Therefore $f^1(V_1) \times f^1(V_2) \subset X \times X - A \Rightarrow X \times X - A$ is spg-open. Hence A is spg-closed.

(ii) Let $(x, y) \notin G(f) \Rightarrow y \neq f(x) \Rightarrow \exists$ disjoint spg-open sets V and W such that $f(x) \in V$ and $y \in W$. Since f is spg-irresolute, \exists U \in SPGO(X) such that $x \in U$ and $f(U) \subset W$. Therefore we obtain $(x, y) \in U \times V \subset X \times Y$, where $U \times V \subset X \times Y - G(f)$. Hence $X \times Y - G(f)$ is spg-open. Hence G(f) is spg-closed in $X \times Y$.

Theorem 3.18: If $f: X \rightarrow Y$ is spg-open and $A = \{(x_1, x_2): f(x_1) = f(x_2)\}$ is closed in $X \times X$. Then Y is spg_2 .

Theorem 3.19: Let Y and $\{X_{\alpha}: \alpha \in I\}$ be Topological Spaces. If $f: Y \to \Pi X_{\alpha}$ be a spg-continuous function and Y is $rT_{1/2}$, then ΠX_{α} and each X_{α} are spg_i , i = 0,1,2.

Problem: If Y be a spg₂ space and A be regular-open subspace of X. If $f: (A, \tau_{/A}) \to (Y, \sigma)$ is spg-irresolute. Is there exists any extension $f: (X, \tau) \to (Y, \sigma)$.

Theorem 3.20: Let X be an arbitrary space, R an equivalence relation in X and $p: X \to X/R$ the identification map. If $R \subset X \times X$ is spg-closed in $X \times X$ and p is spg-open map, then X/R is spg_2 .

Proof: Let p(X), p(y) be distinct members of X/R. Since x and y are not related, $R \subset X \times X$ is spg-closed in $X \times X$. There are spg-open sets U and V such that $x \in U$, $y \in V$ and $U \times V \subset R^c$. Thus $\{p(U), p(V)\}$ are disjoint and also spg-open in X/R since p is spg-open.

Theorem 3.21: The following four properties are equivalent:

ISSN: 2277-9655 Impact Factor: 1.852

- (i) X is spg₂
- (ii) Let $x \in X$. For each $y \neq x$, $\exists U \in SPGO(X)$ such that $x \in U$ and $y \notin spgcl(U)$
- (iii)For each $x \in X$, $\bigcap \{spgcl(U)/U \in SPGO(X) \text{ and } x \in U\} = \{x\}.$
- (iv) The diagonal $\Delta = \{(x, x)/x \in X\}$ is spg-closed in $X \times X$

Proof: (i) \Rightarrow (ii) Let $x \in X$ and $y \neq x$. Then there are disjoint spg-open sets U and V such that $x \in U$ and $y \in V$. Clearly V^c is spg-closed, spgcl(U) $\subset V^c$, $y \notin V^c$ and therefore $y \notin \text{spgcl}(U)$.

- (ii) \Rightarrow (iii) If $y \neq x$, then $\exists U \in SPGO(X)$ s.t. $x \in U$ and $y \notin spgcl(U)$. So $y \notin \cap \{spgcl(U)/U \in SPGO(X) \text{ and } x \in U\}$.
- (iii) \Rightarrow (iv) We prove Δ^c is spg-open. Let $(x, y) \notin \Delta$. Then $y \neq x$ and $\bigcap \{ spgcl(U)/U \in SPGO(X) \text{ and } x \in U \} = \{x\}$ there is some $U \in SPGO(X)$ with $x \in U$ and $y \notin spgcl(U)$. Since $U \bigcap (spgcl(U))^c = \emptyset$, $U \times (spgcl(U))^c$ is a spg-open set such that $(x, y) \in U \times (spgcl(U))^c \subset \Delta^c$.
- (iv) ⇒ (i) $y \neq x$, then $(x, y) \notin \Delta$ and thus there exist spgopen sets U and V such that $(x, y) \in U \times V$ and $(U \times V) \cap \Delta$ = ϕ . Clearly, for the spg-open sets U and V we have; $x \in U$, $y \in V$ and $U \cap V = \phi$.

Spgg₃ and Spgg₄ spaces

Definition 4.1: X is said to be

(i) a spg₃ space if for every spg-closed sets F and a point $x \notin F \exists$ disjoint U, $V \in PO(X)$ such that $F \subseteq U$; $x \in V$ (ii) a spgg₃ space if for every spg-closed sets F and $x \notin F \exists$ disjoint U, $V \in SPGO(X)$ such that $F \subseteq U$; $x \in V$ (iii) a spg₄ space if for each pair of disjoint spg-closed sets F and H \exists disjoint U, $V \in PO(X)$ s.t. $F \subseteq U$; $H \subseteq V$ (iv) a spgg₄ space if for each pair of disjoint spg-closed sets F and H \exists disjoint U, $V \in SPGO(X)$ s.t. $F \subseteq U$; $H \subseteq V$

Note: $rT_i \to spg_i \to spgg_i$, i=3, 4. but the converse is not true in general.

Example 4.1: Let $X = \{a, b, c\}$ and

- (i) $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ then X is spgg_i.
- (ii) $\tau = \{\phi, \{a\}, X\}$ then X is not spgg_i, spg_i and rT_i for i = 3, 4.

Lemma 4.1: X is spg-regular iff X is nearly-regular and $rT_{1/2}$

Proof: X is spg-regular, then obviously X is nearly-regular. Let $A \subseteq X$ be spg-closed. For each $x \notin A \exists V_x \in SPGO(X, x)$ such that $V_x \cap A = \emptyset$. If $V = \bigcup \{V_x : x \notin A\}$, then V is spg-open and V = X-A. Hence A is spg-closed implies X is $rT_{1/2}$.

Theorem 4.1: If X is spg₃. Then for each $x \in X$ and each $U \in SPGO(X, x) \exists a spg-neighborhood V of x such that <math>spgcl(A) \subset U$.

Proof: Let $x \in X$ and U a spg-neighborhood of x. Let B = X - U, then B is spg-closed and by spg-regularity of X, \exists disjoint V, $W \in SPGO(X)$ such that $x \in V$ and $B \subseteq W$. Then $spgcl(V) \cap B = \emptyset \Rightarrow spgcl(V) \subset X - B$.

Theorem 4.2: The following are equivalent:

- (i) X is spg₃
- (ii) For every point $x \in X$ and for every $G \in SPGO(X, x)$, $\exists U \in SPGO(X)$ such that $x \in U \subseteq spgcl(U) \subseteq G$.
- (iii)For every spg-closed set F, the intersection of al spg-closed spg-neighborhoods of F is exactly F.
- (iv) For every set A and $B \in SPGO(X)$ such that $A \cap B \neq \emptyset$, $\exists G \in SPGO(X)$ such that $A \cap G \neq \emptyset$ and $spgcl(G) \subseteq B$.
- (v) For every $A \neq \emptyset$ and $B \in SPGC(X)$ with $A \cap B = \emptyset$, \exists disjoint G; $H \in SPGO(X)$ such that $A \subseteq G$ and $B \subseteq H$.

Theorem 4.3: If X is spgg₃. Then for each $x \in X$ and each $U \in SPGO(X, x)$, $\exists V \in SPGO(X, x)$ such that $spgcl(A) \subset U$.

Proof: Let $x \in X$ and U a spg-neighborhood of x. Let B = X - U, then B is spg-closed and by spgg-regularity of X, \exists disjoint V, $W \in SPGO(X)$ such that $x \in V$ and $B \subseteq W$. Then $spgcl(V) \cap B = \emptyset \Rightarrow spgcl(V) \subset X - B$.

Corollary 4.1: If X is T_3 [resp: rT_3 ; g_3]. Then for each $x \in X$ and each spg-open neighborhood U of x there exists a spg-open neighborhood V of x such that $spgcl(A) \subset U$.

Theorem 4.4: If $f: X \rightarrow Y$ is spg-closed, spg-irresolute bijection. Then X is spgg₃ iff Y is spgg₃.

Proof: Let F be closed set in X and $x \notin F$, then $f(x) \notin f(F)$ and f(F) is spg-closed in Y. By spgg_3 of Y, \exists V; W \in SPGO(y) such that $f(X) \in V$ and $f(F) \subseteq W$. Hence $x \in f^{-1}(V)$ and $F \subseteq f^{-1}(W)$, where $f^{-1}(V)$ and $f^{-1}(W)$ are disjoint spgopen sets in X (by $\operatorname{spg-irresoluteness}$ of f). Hence X is spgg_3 .

Conversely, X be $\operatorname{spgg_3}$ and K any $\operatorname{spg-closed}$ in Y with $y \notin K$, then $f^{-1}(K)$ is $\operatorname{spg-closed}$ in X such that $f^{-1}(Y) \notin f^{-1}(K)$. By $\operatorname{spgg_3}$ of X, \exists disjoint V, $W \in \operatorname{SPGO}(X)$ such that $f^{-1}(Y) \in V$ and $f^{-1}(K) \subseteq W$. Hence $y \in f(V)$ and $K \subseteq f(W)$ such that f(V) and f(W) are disjoint $\operatorname{spg-open}$ sets in X. Thus Y is $\operatorname{spgg_3}$

Theorem 4.5: X is spg-normal iff for every spg-closed set F and a spg-open set G containing A, there exists a spg-open set V such that $F \subseteq V \subseteq \operatorname{spgcl}(V) \subseteq G$

Theorem 4.6: X is spg-normal iff for every pair of disjoint spg-closed sets A and B, there exist disjoint spg-open sets U and V such that A⊂U and B⊂V.

ISSN: 2277-9655 Impact Factor: 1.852

Proof: Necessity: Follows from the fact that every spgopen set is spg-open.

Sufficiency: Let A, B be are disjoint spg-closed sets and U, V are disjoint spg-open sets such that $A\subseteq U$ and $B\subseteq V$. Since U and V are spg-open sets, $A\subseteq U$ and $B\subseteq V\Rightarrow A\subseteq \operatorname{spg}(U)^{\circ}$ and $B\subseteq \operatorname{spg}(V)^{\circ}$. Hence $\operatorname{spg}(U)^{\circ}$ and $\operatorname{spg}(V)^{\circ}$ are disjoint spg-open sets satisfying the axiom of spg-normality.

Theorem 4.7: The following are equivalent:

- (i) X is spg-normal
- (ii) For any pair of disjoint closed sets A and B, \exists disjoint U; $V \in SPGO(X)$ such that $A \subseteq U$ and $B \subseteq V$
- (iii)For every closed set A and an open B containing A, \exists U \in SPGO(X) such that A \subseteq U \subseteq spgcl(U) \subseteq B
- (iv) For every closed set A and a spg-open B containing A, $\exists U \in SPGO(X)$ such that $A \subset U \subset spgcl(U) \subset (B)^{\circ}$
- (v) For every spg-closed set A and every open B containing A, \exists U \in SPGO(X) such that A \subset spgcl(A) \subset U \subset spgcl(U) \subset B.

Theorem 4.8: The following are equivalent:

- (i) X is spg-normal
- (ii) For every $A \in SPGC(X)$ and every spg-open set containing A, there exists a spg-clopen set V such that $A \subseteq V \subseteq U$.

Theorem 4.9: Let X be an almost normal space and $F \cap A = \phi$ where F is regularly closed and A is spgclosed, then \exists disjoint U; $V \in \tau$ such that $F \subseteq U$; $B \subseteq V$.

Theorem 4.10: X is almost normal iff for every disjoint sets F and A where F is regular closed and A is closed, \exists disjoint spg-open sets in X such that $F \subseteq U$; $B \subseteq V$.

Proof: Necessity: Follows from the fact that every open set is spg-open.

Sufficiency: Let F, A be disjoint regular closed set F and a closed set A, \exists disjoint spg-open sets in X such that $F \subseteq U$; $B \subseteq V$. Hence $F \subseteq U^{\circ}$; $B \subseteq V^{\circ}$, where U° and V° are disjoint open sets. Hence X is almost regular.

Theorem 4.11: The following are equivalent:

- (i) X is almost normal.
- (ii) For every regular closed set A and for every spg-open set B containing A, $\exists U \in \tau$ s.t. $A \subseteq U \subseteq cl(U) \subseteq B$.
- (iii)For every spg-closed set A and for every regularopen set B containing A, $\exists U \in \tau$ s.t. $A \subseteq U \subseteq cl(U) \subseteq B$.

(iv) For every pair of disjoint regularly closed set A and spg-closed set B, \exists U; $V \in \tau$ s.t. $cl(U) \cap cl(V) = \phi$.

Spg- R_i spaces; i = 0,1

Definition 5.1: Let $x \in X$. Then

(i) spg-kernel of x is defined and denoted by $Ker_{\{spg\}}\{x\} = \bigcap \{U: U \in SPGO(X) \text{ and } x \in U\}$

 $(ii)Ker_{\{spg\}}F = \bigcap \{U \colon U \in SPGO(X) \text{ and } F \subset U\}$

Lemma 5.1: Let $A \subset X$, then $Ker_{\{spg\}}\{A\} = \{x \in X : spgcl\{x\} \cap A \neq \emptyset.\}$

Lemma 5.2: Let $x \in X$. Then $y \in Ker_{\{spg\}}\{x\}$ iff $x \in spgcl\{y\}$.

Proof: Suppose that $y \notin Ker_{\{spg\}}\{x\}$. Then $\exists V \in SPGO(X)$ containing x such that $y \notin V$. Therefore we have $x \notin spgcl\{y\}$. The proof of converse part can be done similarly.

Lemma 5.3: For any points $x \neq y \in X$, the following are equivalent:

(i) $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\};$ (ii) $spgcl\{x\} \neq spgcl\{y\}.$

Proof: (i) \Rightarrow (ii): Let $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\}$, then $\exists z \in X$ such that $z \in Ker_{\{spg\}}\{x\}$ and $z \notin Ker_{\{spg\}}\{y\}$. From $z \in Ker_{\{spg\}}\{x\}$ it follows that $\{x\} \cap spgcl\{z\} \neq \emptyset \Rightarrow x \in spgcl\{z\}$. By $z \notin Ker_{\{spg\}}\{y\}$, we have $\{y\} \cap spgcl\{z\} = \emptyset$. Since $x \in spgcl\{z\}$, $spgcl\{x\} \subset spgcl\{z\}$ and $\{y\} \cap spgcl\{x\} = \emptyset$. Therefore $spgcl\{x\} \neq spgcl\{y\}$. Now $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\} \Rightarrow spgcl\{x\} \neq spgcl\{y\}$.

(ii) \Rightarrow (i): If $spgcl\{x\} \neq spgcl\{y\}$. Then $\exists z \in X$ such that $z \in spgcl\{x\}$ and $z \notin spgcl\{y\}$. Then \exists a spg-open set containing z and therefore containing z but not y, namely, $y \notin Ker_{\{spg\}}\{x\}$. Hence $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\}$.

Definition 5.2: X is said to be

- (i) $\operatorname{spg-R_0} \operatorname{iff} \operatorname{spgcl}\{x\} \subseteq G$ whenever $x \in G \in \operatorname{SPGO}(X)$.
- (ii) weakly spg- R_0 iff \cap spgcl $\{x\} = \emptyset$.
- (iii) spg-R₁ iff for $x,y \in X$ such that $spgcl\{x\} \neq spgcl\{y\}$ \exists disjoint U; $V \in SPGO(X)$ such that $spgcl\{x\} \subseteq U$ and $spgcl\{y\} \subseteq V$.

Example 5.1: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ then X is $spgR_0$.

Remark 5.1:

- (i) $r-R_i \Rightarrow R_i \Rightarrow g R_i \Rightarrow spgR_i$, i = 0, 1.
- (ii) Every weakly- R_0 space is weakly spg R_0 .

Lemma 5.1: Every $spgR_0$ space is weakly $spgR_0$.

Converse of the above Theorem is not true in general by the following Examples.

ISSN: 2277-9655 Impact Factor: 1.852

Example 5.2: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, then X is weakly $spgR_0$ but not $spgR_i$, i = 0, 1.

Theorem 5.1: Every spg-regular space X is spg_2 and $spg-R_0$.

Proof: Let X be spg-regular and let $x \neq y \in X$. By Lemma 4.1, $\{x\}$ is either spg-open or spg-closed. If $\{x\}$ is spg-open, $\{x\}$ is spg-open and hence spg-clopen. Thus $\{x\}$ and $X - \{x\}$ are separating spg-open sets. Similar argument, for $\{x\}$ is spg-closed gives $\{x\}$ and $X - \{x\}$ are separating spg-closed sets. Thus X is spg₂ and spg- R_0 .

Theorem 5.2: X is spg-R₀ iff given $x \neq y \in X$; spgcl $\{x\} \neq \text{spgcl}\{y\}$.

Proof: Let X be spg-R₀ and let let $x, \neq y \in X$. Suppose U is a spg-open set containing x but not y, then $y \in \text{spgcl}\{y\} \subset X$ -U and so $x \notin \text{spgcl}\{y\}$. Hence $\text{spgcl}\{x\} \neq \text{spgcl}\{y\}$.

Conversely, let $x, \neq y \in X$ such that $spgcl\{x\} \neq spgcl\{y\} \Rightarrow spgcl\{x\} \subset X - spgcl\{y\} = U(say)$ a spg-open set in X. This is true for every $spgcl\{x\}$. Thus $\cap spgcl\{x\} \subseteq U$ where $x \in spgcl\{x\} \subseteq U \in SPGO(X)$, which in turn implies $\cap spgcl\{x\} \subseteq U$ where $x \in U \in SPGO(X)$. Hence X is $spgR_0$.

Theorem 5.3: X is weakly $spgR_0$ iff $Ker_{\{spg\}}\{x\} \neq X$ for any $x \in X$.

Proof: Let $x_0 \in X$ such that $\ker_{\{spg\}} \{x_0\} = X$. This means that x_0 is not contained in any proper spg-open subset of X. Thus x_0 belongs to the spg-closure of every singleton set. Hence $x_0 \in \cap \operatorname{spgcl} \{x\}$, a contradiction.

Conversely assume $\text{Ker}_{\{spg\}}\{x\} \neq X$ for any $x \in X$. If there is an $x_0 \in X$ such that $x_0 \in \cap \{spgcl\{x\}\}$, then every spg-open set containing x_0 must contain every point of X. Therefore, the unique spg-open set containing x_0 is X. Hence $\text{Ker}_{\{spg\}}\{x_0\} = X$, which is a contradiction. Thus X is weakly $spg-R_0$.

Theorem 5.4: The following statements are equivalent:

- (i) X is $spg-R_0$ space.
- (ii) For each $x \in X$, $spgcl\{x\} \subset Ker_{\{spg\}}\{x\}$
- (iii)For any spg-closed set F and a point $x \notin F$, $\exists U \in SPGO(X)$ such that $x \notin U$ and $F \subset U$.
- (iv) Each spg-closed set F can be expressed as $F = \bigcap \{G: G \text{ is spg-open and } F \subseteq G\}$.

Impact Factor: 1.852

- (v) Each spg-open set G can be expressed as $G = \bigcup \{A: A \text{ is spg-closed and } A \subset G\}.$
- (vi) For each spg-closed set F, $x \notin F$ implies spg-cl $\{x\} \cap F = \emptyset$.
- **Proof:** (i) \Rightarrow (ii) For any $x \in X$, we have $Ker_{\{spg\}}\{x\} = \bigcap \{U: U \in SPGO(X) \text{ and } x \in U\}$. Since X is $spg-R_0$, each spg-open set containing x contains $spgcl\{x\}$. Hence $spgcl\{x\} \subset Ker_{\{spg\}}\{x\}$.
- (ii) \Rightarrow (iii) Let $x \notin F \in SPGC(X)$. Then for any $y \in F$; $spgcl\{y\} \subset F$ and so $x \notin spgcl\{y\} \Rightarrow y \notin spgcl\{x\}$ that is $\exists U_y \in SPGO(X)$ such that $y \in U_y$ and $x \notin U_y \forall y \in F$. Let $U = \bigcup \{U_y \colon U_y \text{ is spg-open, } y \in U_y \text{ and } x \notin U_y\}$. Then U is spg-open such that $x \notin U$ and $F \subset U$.
- (iii) \Rightarrow (iv) Let F be any spg-closed set and N = \cap {G: G is spg-open and F \subset G}. Then F \subset N \rightarrow (1).

Let $x \notin F$, then by (iii) $\exists G \in SPGO(X)$ such that $x \notin G$ and $F \subset G$

Hence $x \notin N$ which implies $x \in N \Rightarrow x \in F$. Hence $N \subseteq F \Rightarrow$ (2).

Therefore from (1) and (2), each spg-closed set $F = \bigcap \{G: G \text{ is spg-open and } F \subset G\}$

- $(iv) \Rightarrow (v)$ obvious.
- (v) ⇒ (vi) Let $x \notin F \in SPGC(X)$. Then X-F = G is a spgopen set containing x. Then by (v), G can be expressed as the union of spg-closed sets A contained in G, and so there is an M∈SPGC(X) such that $x \in M \subset G$; and hence $spgcl\{x\} \subset G$ which implies $spgcl\{x\} \cap F = \emptyset$.
- (vi) \Rightarrow (i) Let $x \in G \in SPGO(X)$. Then $x \notin (X-G)$, which is a spg-closed set. Therefore by (vi) $spgcl\{x\} \cap (X-G) = \emptyset$, which implies that $spgcl\{x\} \subseteq G$. Thus X is $spgR_0$ space.

Theorem 5.5: Let $f: X \to Y$ be a spg-closed one-one function. If X is weakly spg- R_0 , then so is Y.

Theorem 5.6: If X is weakly spg- R_0 , then for every space Y, X× Y is weakly spg- R_0 .

Proof: \cap spgcl{(x,y)} $\subseteq \cap \{\text{spgcl}\{x\} \times \text{spgcl}\{y\}\} = \cap [\text{spgcl}\{x\}] \times [\text{spgcl}\{y\}] \subseteq \phi \times Y = \phi$. Hence $X \times Y$ is spgR₀.

Corollary 5.1:

- (i) If X and Y are weakly $spgR_0$, then X× Y is weakly $spgR_0$.
- (ii) If X and Y are (weakly-) R_0 , then $X \times Y$ is weakly $spgR_0$.
- (iii)If X and Y are $spgR_0$, then X× Y is weakly $spgR_0$.
- (iv) If X is $spgR_0$ and Y are weakly R_0 , then $X \times Y$ is weakly $spgR_0$.

Theorem 5.7: X is $spgR_0$ iff for any x, $y \in X$, $spgcl\{x\} \neq spgcl\{y\} \Rightarrow spgcl\{x\} \cap spgcl\{y\} = \phi$.

Proof: Let X is $spgR_0$ and x, $y \in X$ such that $spgcl\{x\} \neq spgcl\{y\}$. Then $\exists z \in spgcl\{x\}$ such that $z \notin spgcl\{y\}$ (or $z \in spgcl\{y\}$) such that $z \notin spgcl\{x\}$. There exists $V \in SPGO(X)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, $x \notin spgcl\{y\}$. Thus $x \in [spgcl\{y\}]^c \in SPGO(X)$, which implies $spgcl\{x\} \subset [spgcl\{y\}]^c$ and $spgcl\{x\} \cap spgcl\{y\} = \phi$. The proof for otherwise is similar.

ISSN: 2277-9655

Sufficiency: Let $x \in V \in SPGO(X)$. We show that $spgcl\{x\} \subset V$. Let $y \notin V$, i.e., $y \in V^c$. Then $x \neq y$ and $x \notin spgcl\{y\}$. Hence $spgcl\{x\} \neq spgcl\{y\}$. But $spgcl\{x\} \cap spgcl\{y\} = \emptyset$. Hence $y \notin spgcl\{x\}$. Therefore $spgcl\{x\} \subset V$.

Theorem 5.8: X is spgR₀ iff for any points x, $y \in X$, $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\} \Rightarrow Ker_{\{spg\}}\{x\} \cap Ker_{\{spg\}}\{y\} = \emptyset$

Proof: Suppose X is $spgR_0$. Thus by Lemma 5.3 for any $x, y \in X$ if $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\}$ then $spgcl\{x\} \neq spgcl\{y\}$. Assume that $z \in Ker_{\{spg\}}\{x\} \cap Ker_{\{spg\}}\{y\}$. By $z \in Ker_{\{spg\}}\{x\}$ and Lemma 5.2, it follows that $x \in spgcl\{z\}$. Since $x \in spgcl\{z\}$, $spgcl\{x\} = spgcl\{z\}$. Similarly, we have $spgcl\{y\} = spgcl\{z\} = spgcl\{x\}$. This is a contradiction. Therefore, we have $Ker_{\{spg\}}\{x\} \cap Ker_{\{spg\}}\{y\} = \emptyset$.

Conversely, let $x, y \in X$, s.t. $spgcl\{x\} \neq spgcl\{y\}$, then by Lemma 5.3, $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\}$. Hence by hypothesis $Ker_{\{spg\}}\{x\} \cap Ker_{\{spg\}}\{y\} = \varphi$ which implies $spgcl\{x\} \cap spgcl\{y\} = \varphi$ Because $z \in spgcl\{x\}$ implies that $x \in Ker_{\{spg\}}\{z\}$ and therefore $Ker_{\{spg\}}\{x\} \cap Ker_{\{spg\}}\{z\} \neq \varphi$ Therefore by Theorem 5.7 X is a $spgR_0$ space.

Theorem 5.9: The following properties are equivalent:

- (i) X is a spg-R₀ space.
- (ii) For any $A \neq \emptyset$ and $G \in SPGO(X)$ such that $A \cap G \neq \emptyset$ $\exists F \in SPGC(X)$ such that $A \cap F \neq \emptyset$ and $F \subset G$.
- **Proof:** (i) \Rightarrow (ii): Let $A \neq \emptyset$ and $G \in SPGO(X)$ such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in SPGO(X)$, $spgcl\{x\} \subset G$. Set $F = spgcl\{x\}$, then $F \in SPGC(X)$, $F \subset G$ and $A \cap F \neq \emptyset$
- (ii) \Rightarrow (i): Let $G \in SPGO(X)$ and $x \in G$. By (2), $spgcl\{x\} \subset G$. Hence X is $spg-R_0$.

Theorem 5.10: The following properties are equivalent: (i) X is a spg- R_0 space;

- (ii) $x \in spgcl\{y\}$ iff $y \in spgcl\{x\}$, for any points x and y in y
- **Proof:** (i) \Rightarrow (ii): Assume X is $spgR_0$. Let $x \in spgcl\{y\}$ and D be any spg-open set such that $y \in D$. Now by hypothesis, $x \in D$. Therefore, every spg-open set which contain y contains x. Hence $y \in spgcl\{x\}$.

(ii) \Rightarrow (i): Let U be a spg-open set and $x \in U$. If $y \notin U$, then $x \notin \text{spgcl}\{y\}$ and hence $y \notin \text{spgcl}\{x\}$. This implies that $\text{spgcl}\{x\} \subset U$. Hence X is spgR_0 .

Theorem 5.11: The following properties are equivalent:

- (i) X is a spgR₀ space;
- (ii) If F is spg-closed, then $F = Ker_{\{spg\}}(F)$;
- (iii) If F is spg-closed and $x \in F$, then $Ker_{\{spg\}}\{x\} \subseteq F$;
- (iv) If $x \in X$, then $Ker_{\{spg\}}\{x\} \subset spgcl\{x\}$.
- **Proof:** (i) \Rightarrow (ii): Let $x \notin F \in SPGC(X) \Rightarrow (X-F) \in SPGO(X)$ and contains x. For X is $spgR_0$, $spgcl(\{x\}) \subset (X-F)$. Thus $spgcl(\{x\}) \cap F = \emptyset$ and $x \notin Ker_{\{spg\}}(F)$. Hence $Ker_{\{spg\}}(F) = F$.
- (ii) \Rightarrow (iii): A \subset B \Rightarrow Ker_{spg}(A) \subset Ker_{spg}(B). Therefore, by (2) Ker_{spg}{x} \subset Ker_{spg}(F) = F.
- (iii) \Rightarrow (iv): Since $x \in spgcl\{x\}$ and $spgcl\{x\}$ is spgclosed, by (3) $Ker_{\{spg\}}\{x\} \subset spgcl\{x\}$.
- (iv) \Rightarrow (i): Let $x \in \text{spgcl}\{y\}$. Then by Lemma 5.2 $y \in \text{Ker}_{\{\text{spg}\}}\{x\}$. Since $x \in \text{spgcl}\{x\}$ and $\text{spgcl}\{x\}$ is spgclosed, by (iv) we obtain $y \in \text{Ker}_{\{\text{spg}\}}\{x\} \subseteq \text{spgcl}\{x\}$. Therefore $x \in \text{spgcl}\{y\}$ implies $y \in \text{spgcl}\{x\}$. The converse is obvious and X is spgR_0 .

Corollary 5.2: The following properties are equivalent:

- (i) X is spgR₀.
- (ii) $spgcl\{x\} = Ker_{\{spg\}}\{x\} \forall x \in X$.

Proof: Straight forward from Theorems 5.4 and 5.11.

Recall that a filterbase F is called spg-convergent to a point x in X, if for any spg-open set U of X containing x, there exists $B \in F$ such that $B \subset U$.

Lemma 5.4: Let x and y be any two points in X such that every net in X spg-converging to y spg-converges to x. Then $x \in \text{spgcl}\{y\}$.

Proof: Suppose that $x_n = y$ for each $n \in N$. Then $\{x_n\}_{n \in N}$ is a net in spgcl $\{(\{y\})\}$. Since $\{x_n\}_{n \in N}$ spg-converges to y, then $\{x_n\}_{n \in N}$ spg-converges to x and this implies that $x \in spgcl\{y\}$.

Theorem 5.12: The following statements are equivalent: (i) X is a $spgR_0$ space;

(ii) If $x, y \in X$, then $y \in spgcl\{x\}$ iff every net in X spg-converging to y spg-converges to x.

Proof: (i) \Rightarrow (ii): Let x, y \in X such that y \in spgcl{x}. Suppose that $\{x_{\alpha}\}_{\alpha \in I}$ is a net in X such that $\{x_{\alpha}\}_{\alpha \in I}$ spgconverges to y. Since y \in spgcl{x}, by Thm. 5.7 we have spgcl{x} = spgcl{y}. Therefore x \in spgcl{y}. This means that $\{x_{\alpha}\}_{\alpha \in I}$ spg-converges to x.

Conversely, let $x, y \in X$ such that every net in X spg-converging to y spg-converges to x. Then $x \in Spg-Converges$

 $cl\{y\}[by 5.4]$. By Thm. 5.7, we have $spgcl\{x\} = spgcl\{y\}$. Therefore $y \in spgcl\{x\}$.

ISSN: 2277-9655 Impact Factor: 1.852

(ii) \Rightarrow (i): Let $x, y \in X$ such that $spgcl\{x\} \cap spgcl\{y\} \neq \emptyset$. Let $z \in spgcl\{x\} \cap spgcl\{y\}$. So \exists a net $\{x_{\alpha}\}_{\alpha \in I}$ in $spgcl\{x\}$ such that $\{x_{\alpha}\}_{\alpha \in I}$ spg-converges to z. Since $z \in spgcl\{y\}$, then $\{x_{\alpha}\}_{\alpha \in I}$ spg-converges to y. It follows that $y \in spgcl\{x\}$. Similarly we obtain $x \in spgcl\{y\}$. Therefore $spgcl\{x\} = spgcl\{y\}$. Hence X is $spgR_0$.

Theorem 5.13:

- (i) Every subspace of spgR₁ space is again spgR₁
- (ii)Product of any two spgR₁ spaces is again spgR₁.

Theorem 5.14: X is $spgR_1$ iff given $x \neq y \in X$, $spgcl\{x\} \neq spgcl\{y\}$.

Theorem 5.15: Every spg_2 space is $spgR_1$.

The converse is not true. However, we have the following result.

Theorem 5.16: Every spg_1 and $spgR_1$ space is spg_2 .

Proof: Let $x \ne y \in X$. Since X is spg_1 ; $\{x\}$ and $\{y\}$ are spg-closed sets such that $spgcl\{x\} \ne spgcl\{y\}$. Since X is $spgR_1$, there exists disjoint spg-open sets U and V such that $x \in U$; $y \in V$. Hence X is spg_2 .

Corollary 5.3: X is spg_2 iff it is $spgR_1$ and spg_1 .

Theorem 5.17: The following are equivalent

- (i) X is spg-R_{1.}
- (ii) \cap spgcl $\{x\} = \{x\}.$
- (iii)For any $x \in X$, intersection of all spg-neighborhoods of x is $\{x\}$.
- **Proof:** (i) \Rightarrow (ii) Let $y \neq x \in X$ such that $y \in \text{spgcl}\{x\}$. Since X is spgR_1 , $\exists U \in \text{SPGO}(X)$ such that $y \in U$, $x \notin U$ or $x \in U$, $y \notin U$. In either case $y \notin \text{spgcl}\{x\}$. Hence $\cap \text{spgcl}\{x\} = \{x\}$.
- (ii) \Rightarrow (iii) If $y \neq x \in X$, then $x \notin \cap \operatorname{spgcl}\{y\}$, so there is a spg-open set containing x but not y. Therefore y does not belong to the intersection of all spg-neighborhoods of x. Hence intersection of all spg-neighborhoods of x is $\{x\}$.
- (iii) \Rightarrow (i) Let $x \neq y \in X$. by hypothesis, y does not belong to the intersection of all spg-neighborhoods of x and x does not belong to the intersection of all spg-neighborhoods of y, which implies $spgcl\{x\} \neq spgcl\{y\}$. Hence X is $spg-R_1$.

Theorem 5.18: The following are equivalent:

- (i) X is spg-R₁.
- (ii) For each pair $x, y \in X$ with $spgcl\{x\} \neq spgcl\{y\}$, \exists a spg-open, spg-closed set V s.t. $x \in V$ and $y \notin V$, and

(iii)For each pair x, $y \in X$ with $spgcl\{x\} \neq spgcl\{y\}$, $\exists f: X \rightarrow [0, 1]$ s.t. f(x) = 0 and f(y) = 1 and f is spgcontinuous.

Proof: (i) \Rightarrow (ii) Let x, y \in X with spgcl $\{x\} \neq$ spgcl $\{y\}$, \exists disjoint U; W \in SPGO(X) such that spgcl $\{x\}$ \subset U and spgcl $\{y\}$ \subset W and V = spgcl(U) is spg-open and spgclosed such that $x \in V$ and $y \notin V$.

(ii) \Rightarrow (iii) Let x, $y \in X$ with $spgcl\{x\} \neq spgcl\{y\}$, and let V be spg-open and spg-closed such that $x \in V$ and $y \notin V$. Then $f: X \rightarrow [0, 1]$ defined by f(z) = 0 if $z \in V$ and f(z) = 1 if $z \notin V$ satisfied the desired properties.

(iii) \Rightarrow (i) Let x, y \in X such that spgcl{x} \neq spgcl{y}, let $f: X \rightarrow [0, 1]$ such that f is spg-continuous, f(x) = 0 and f(y) = 1. Then $U = f^{-1}([0, 1/2))$ and $V = f^{-1}((1/2, 1])$ are disjoint spg-open and spg-closed sets in X, such that spgcl{x} \subset U and spgcl{y} \subset V.

Theorem 5.19: If X is $spg-R_1$, then X is $spg-R_0$.

Proof: Let $x \in U \in SPGO(X)$. If $y \notin U$, then $spgcl\{x\} \neq spgcl\{y\}$. Hence, \exists a spg-open V such that $spgcl\{y\} \subset V$ and $x \notin V \Rightarrow y \notin spgcl\{x\}$. Thus $spgcl\{x\} \subset U$. Therefore X is spg- R_0 .

Theorem 5.20: X is spg-R₁ iff for x, y ∈ X, $Ker_{\{spg\}}\{x\} \neq Ker_{\{spg\}}\{y\}$, \exists disjoint U; V ∈ SPGO(X) such that $spgcl\{x\} \subset U$ and $spgcl\{y\} \subset V$.

Spg- C_i and spg- D_i spaces, i = 0,1,2

Definition 6.1: X is said to be a

- (i) $spg-C_0$ space if for each pair of distinct points x, y of X there exists a spg-open set G whose closure contains either of the point x or y.
- (ii) $spg-C_1$ space if for each pair of distinct points x, y of X there exists a spg-open set G whose closure containing x but not y and a spg-open set H whose closure containing y but not x.
- (iii)spg- C_2 space if for each pair of distinct points x, y of X there exists disjoint spg-open sets G and H such that G containing x but not y and H containing y but not x.

Note: spg- $C_2 \Rightarrow \text{spg-}C_1 \Rightarrow \text{spg-}C_0$. Converse need not be true in general as shown by the following Example.

Example 6.1:

- (i) Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, c\}, X\}$ then X is spg-C_i, i = 1, 2.
- (ii) Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$ then X is not spg-C_i, i = 0, 1, 2.

Theorem 6.1:

- (i) Every subspace of spg-C_i space is spg-C_i.
- (ii) Every spg_i spaces is spg-C_i.

(iii)Product of spg-C_i spaces are spg-C_i.

Theorem 6.2: Let (X, τ) be any spg- C_i space and A be any non empty subset of X then A is spg- C_i iff (A, τ_{A}) is spg- C_i .

ISSN: 2277-9655 Impact Factor: 1.852

Theorem 6.3: (i) If X is spg-C₁ then each singleton set is spg-closed.

(ii)In an spg- C_1 space disjoint points of X has disjoint spg-closures.

Definition 6.2: A \subset X is called a spg-Difference(Shortly spgD-set) set if there are two U, V \in SPGO(X) such that U \neq X and A = U-V.

Clearly every spg-open set U different from X is a spgD-set if A = U and $V = \phi$.

Definition 6.3: X is said to be a

- (i) $spg-D_0$ if for any pair of distinct points x and y of X there exist a spgD-set in X containing x but not y or a spgD-set in X containing y but not x.
- (ii) $spg-D_1$ if for any pair of distinct points x and y in X there exist a spgD-set of X containing x but not y and a spgD-set in X containing y but not x.
- (iii)spg- D_2 if for any pair of distinct points x and y of X there exists disjoint spgD-sets G and H in X containing x and y respectively.

Example 6.2: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, c\}, X\}$ then X is $spgD_i$, i = 0, 1, 2.

Remark 6.2: (i) If X is rT_i , then it is spg_i , i = 0, 1, 2 and converse is false.

- (ii) If X is spg_i , then it is $spg_{\{i-1\}}$, i = 1, 2.
- (iii) If X is spg_i , then it is $spg-D_i$, i = 0, 1, 2.
- (iv) If X is spg-D_i, then it is spg-D_{i-1}, i = 1, 2.

Theorem 6.4: The following statements are true:

- (i) X is $spg-D_0$ iff it is spg_0 .
- (ii) X is spg- D_1 iff it is spg- D_2 .

Corollary 6.1: If X is spg- D_1 , then it is spg₀. **Proof:** Remark 6.1(iv) and Theorem 6.2(i)

Definition 6.4: A point $x \in X$ which has X as the unique spg-neighborhood is called spg.c.c point.

Theorem 6.5: For an spg_0 space X the following are equivalent:

- (i) X is $spg-D_1$;
- (ii) X has no spg.c.c point.

Proof: (i) \Rightarrow (ii) Since X is spg-D₁, then each point x of X is contained in a spgD-set O = U - V and thus in U. By Definition $U \neq X$. This implies that x is not a spg.c.c

(ii) \Rightarrow (i) If X is spg₀, then for each $x \neq y \in X$, at least one of them, x (say) has a spg-neighborhood U containing x and not y. Thus U which is different from X is a spgD-set. If X has no spg.c.c point, then y is not a spg.c.c point. This means that there exists a spgneighborhood V of y such that $V \neq X$. Thus $y \in (V-(U)$ but not x and V-U is a spgD-set. Hence X is spg-D₁.

Corollary 6.2: A spg_0 space X is $spg-D_1$ iff there is a unique spg.c.c point in X.

Proof: Only uniqueness is sufficient to prove. If x_{00} and y_0 are two spg.c.c points in X then since X is spg₀, at least one of x_0 and y_0 say x_0 , has a spg-neighborhood U such that $x_0 \in U$ and $y_0 \notin U$, hence $U \neq X$, x_0 is not a spg.c.c point, a contradiction.

Remark 6.2: It is clear that an spg_0 space X is not spg_0 . If there is a unique spg_0 -c.c point in X. It is unique because if x and y are both spg_0 -c.c point in X, then at least one of them say x has a spg_0 -neighborhood U containing x but not y. But this is a contradiction since U $\neq X$.

Definition 6.5: X is spg-symmetric if for x and y in X, x \in spgcl{y} implies y \in spgcl{x}.

Theorem 6.6: X is spg-symmetric iff $\{x\}$ is spgg-closed for each $x \in X$.

Proof: Assume that $x \in \text{spgcl}\{y\}$ but $y \notin \text{spgcl}\{x\}$. This means that $[\text{spgcl}\{x\}]^c$ contains y. This implies that $\text{spgcl}\{y\} \subset [\text{spgcl}\{x\}]^c$. Now $[\text{spgcl}\{x\}]^c$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subset E \in SPGO(X)$ but $spgcl\{x\} \not\subset E$. This means that $spgcl\{x\}$ and E^c are not disjoint. Let y belongs to their intersection. Now we have $x \in spgcl\{y\} \subset E^c$ and $x \notin E$. But this is a contradiction.

Corollary 6.3: If X is a spg₁, then it is spg-symmetric. **Proof:** In a spg₁ space, singleton sets are spg-closed (Theorem 2.2(ii)) and therefore spg-closed (Remark 6.3). By Theorem 6.6, the space is spg-symmetric.

Corollary 6.4: The following are equivalent:

(i) X is spg-symmetric and spg₀(ii) X is spg₁

Proof: By Corollary 6.3 and Remark 6.1 it suffices to prove only (i) \Rightarrow (ii). Let $x \neq y$ and by spg_0 , we may assume that $x \in G_1 \subset \{y\}^c$ for some $G_1 \in SPGO(X)$. Then $x \notin spgcl\{y\}$ and hence $y \notin spgcl\{x\}$. There exists a

 $G_2 \in SPGO(X)$ such that $y \in G_2 \subset \{x\}^c$ and X is a spg_1 space.

ISSN: 2277-9655 Impact Factor: 1.852

Theorem 6.7: For a spg-symmetric space X the following are equivalent:

(i) X is spg_0 ; (ii) X is $spg-D_1$; (iii) X is spg_1 .

Proof: (i) \Rightarrow (iii) Corollary 6.4 and (iii) \Rightarrow (i) \Rightarrow (i) Remark 6.1.

Theorem 6.8: If $f: X \rightarrow Y$ is a spg-irresolute surjective function and E is a spgD-set in Y, then the inverse image of E is a spgD-set in X.

Proof: Let E be a spgD-set in Y. Then there are spg-open sets U_1 and U_2 in Y such that $E = U_1 - U_2$ and $U_1 \neq Y$. By the spg-irresoluteness of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are spg-open in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$ Hence $f^{-1}(E) = f^{-1}(U_1) - f^{-1}(U_2)$ is a spg-D-set.

Theorem 6.9: If Y is spg-D₁ and $f: X \to Y$ is spg-irresolute and bijective, then X is spg-D₁.

Proof: Suppose that Y is a spg-D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is spg-D₁, there exist spg-D-sets G_z and G of Y containing f(X) and f(y) respectively, such that $f(y) \notin G_z$ and $f(X) \notin G$. By Theorem 6.8, $f^{-1}(G_z)$ and $f^{-1}(G)$ are spg-D-sets in X containing x and y, respectively. This implies that X is a spg-D₁ space.

Theorem 6.10: X is spg-D₁ iff for each pair of distinct points x, y in X there exist a spg-irresolute surjective function $f: X \to Y$, where Y is a spg-D₁ space such that f(x) and f(y) are distinct.

Proof: Necessity. For every $x \neq y \in X$, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a spg-irresolute, surjective function f of a space X onto a spg- D_1 space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint spg-D-sets G_x ; $G_y \subset Y$ such that $f(x) \in G_x$ and $f(y) \in G$. Since f is spg-irresolute and surjective, by Theorem 6.8, $f^{-1}(G_x)$ and $f^{-1}(G)$ are disjoint spg-D-sets in X containing x and y respectively. Therefore X is spg- D_1 space.

Corollary 6.5: Let $\{X_{\alpha}/\alpha \in I\}$ be any family of topological spaces. If X_{α} is $spg-D_1$ for each $\alpha \in I$, then the product $\prod X_{\alpha}$ is $spg-D_1$.

Proof: Let (x_{α}) and (y_{α}) be any pair of distinct points in ΠX_{α} . Then there exists an index $\beta \in I$ s.t. $x_{\beta} \neq y_{\beta}$. The natural projection $P_{\beta} \colon \Pi X_{\alpha} {\rightarrow} X_{\beta}$ is almost continuous and almost open and P_{β} $((x_{\alpha})) = P_{\beta}((y_{\alpha}))$. Since X_{β} is spg- D_1 , ΠX_{α} is spg- D_1 .

References

- [1] Ahmad Al.Omari and Mohd. Salmi Md Noorani, Regular generalized w-closed sets, I.J.M.M.S.Vol(2007).
- [2] S.P.Arya and T.Nour, Characterizations of snormal spaces, I.J.P.A.M.,21(8)(1990),717-719.
- [3] S.N. Bairagya and S.P. Baisnab, On structure of Generalized open sets, Bull. Cal. Math. Soc., 79(1987)81-88.
- [4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in Topological Spaces, Mem. Fac. Sci. Kochi. Univ(Math)12(1991)05-13.
- [5] Chawalit Boonpok-Generalized continuous functions from any topological space into product, Naresuan University journal(2003)11(2)93-98.
- [6] Chawalit Boonpok, Preservation Theorems concering g-Hausdorf and rg-Hausdorff spaces, KKU. Sci.J.31(3)(2003)138-140.
- [7] R.Devi, K. Balachandran and H.Maki, semi-Generalized Homeomorphisms and Generalized semi-Homeomorphismin Topological Spaces, IJPAM, 26(3)(1995)271-284.
- [8] W.Dunham, $T_{1/2}$, Spaces, Kyungpook Math. J.17(1977), 161-169.
- [9] A.I. El-Maghrabi and A.A. Naset, Between semi-closed snd GS-closed sets, J.Taibah. Uni. Sci. 2(2009)79-87.
- [10] M. Ganster, S. Jafarai and G.B. Navalagi, on semi-g-regular and semi-g-normal spaces.
- [11] Jiling Cao, Sina geenwood and Ivan Reilly, Generalized closed sets: A Unified Approach.
- [12] Jiling Cao, M. Ganster and Ivan Reily, on sgclosed sets and gα-closed sets.
- [13] Jin Han Park, On s-normal spaces and some functions, IJPAM 30(6)(1999)575-580.
- [14] S.R.Malghan, Generalized closed maps, The J. Karnataka Univ. Vol.27(1982)82-88.
- [15] Miguel Caldas and R.K. Saraf, A surve on semi- $T_{1/2}$ spaces, Pesquimat, Voil.II, No.1(1999)33-40.
- [16] Miguel Caldas, R.K. Saraf, A Research on characterization of semi- $T_{1/2}$ spaces, Divulgenious, Math.Vol.8,No.1(2000) 43-50.
- [17] G.B. Navalagi, Properties of gs-closed sets and sg-closed sets in Topology.
- [18] G. B. Navalagi Semi-Generalized separation in Topology.
- [19] Norman Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.

[20] T.Noiri, semi-normal spaces and some functions, Acta Math. Hungar 65 (3) (1994) 305-311.

ISSN: 2277-9655 Impact Factor: 1.852

- [21] Kyungpook Math. J. 36 (1996) 183-190.
- [22] T. Noiri and V.Popa, On G-regular spaces and some functions, Mem. Fac. Sci. Kochi. Univ(Math)20(1999)67-74.
- [23] N. Palaniappan and K. Chandrasekhara rao, Regular Generalized closed sets, Kyungpook M.J. Vol.33(2)(1993)211-219.
- [24] V.K. Sharma, g-open sets and Almost normality, Acta Ciencia Indica, Vol XXXIIIM, No.3(2007)1249-1251.
- [25] V.K. Sharma, sg-separation axioms, Acta Ciencia Indica, Vol XXXIIIM, No.3(2007)1253-1259.
- [26] V.K. Sharma, g-separation axioms, Acta Ciencia Indica, Vol XXXIIIM, No.4(2007)1271-1276.
- [27] M.K.R.S. Veerakumar, concerning semi $T_{1/3}$ spaces.
- [28] M.K.R.S. Veerakumar, pre-semi-closed sets, Indian J. Math. Vol 44, No.2(2002)165-181.
- [29] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ(Math)21(2000)01-19.