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Introduction
Norman Levine introduced generalized closed 

sets in 1970. After him various Authors[1-18; 20-29] studied 
different versions of generalized sets and related 
topological properties. Recently V.K. Sharma and the 
author of the present paper defined separation axioms for 
g-open; gs-open; sg-open; rg-open sets and studied their 
basic properties.. Throughout the paper a space X means 
a topological space (X,τ). For any subset A of X its 
complement, interior, closure, spg-interior, spg-closure 
are denoted respectively by the symbols Ac, Ao, cl(A), 
spg-int(A) and spg-cl(A).  
 
Definition 1.1: A ⊆ X is called 
 (i)  regularly open if A = int(cl(A)) and regularly closed 
if A = cl(int(A)). 
(ii)  semi-open if there exists an open set U such that U⊆ 
A⊆ cl(U). 
(iii) generalized closed[resp: regular generalized; 
generalized regular]{briefly: g-closed; rg-closed; pg-
closed}if cl{A} ⊆U whenever A⊆U and U is open[resp: 
regular open, open] and generalized[resp: regular 
generalized; generalized regular] open if its complement 
is generalized[resp: regular generalized; generalized 
regular] closed. 
 
Note 1: The class of regular open sets, open sets, g-open 
sets and spg-open sets are denoted by RO(X), τ(X), 
GO(X) and SPGO(X) respectively. Clearly 
RO(X)⊂τ(X)⊂GO(X)⊂PGO(X). 
 
Note 2: For A⊂X, A∈PGO(X, x) means A is a 
generalized regular-open neighborhood of X containing 
x. 
 

Definition 1.3: A⊂X is called clopen[resp: nearly-
clopen; semi-clopen; g-clopen; spg-clopen] if it is both 
open[resp: regular-open; semi-open; g-open; spg-open] 
and closed[resp: regular-closed; semi-closed; g- closed; 
spg-closed] 
 
Definition 1.4: A function f: X → Y is said to be 
(i)   Continuous [resp: nearly continuous, semi-
continuous] if inverse image of open set is open[resp: 
regular-open, semi-open] 
(ii)  g-continuous [resp: spg-continuous] if inverse image 
of closed set is g-closed [resp: spg-closed] 
(iii) irresolute [resp: nearly irresolute, spg-irresolute] if 
inverse image of semi-open [resp: regular-open, spg-
open] set is semi-open [resp: regular-open, spg-open] 
(iv)  g-irresolute [resp: spg-irresolute; sg-irresolute] if 
inverse image of g-closed [resp: spg-closed, sg-closed] 
set is g-closed [resp: spg-closed; sg-closed] 
(v)   open [resp: nearly open, semi-open] if the image of 
open set is open [resp: regular-open, semi-open] 
(vi)  g-open [resp: spg-open] if the image of open set is 
g-open [resp: spg-open] 
(vii) homeomorphism [resp: nearly homeomorphism, 
semi-homeomorphism] if f is bijective, continuous [resp: 
nearly-continuous, semi-continuous] and  f -1 is 
continuous[resp: nearly-continuous, semi-continuous] 
(viii) rc-homeomorphism [resp: sc-homeomorphism] if f 
is bijective r-irresolute [resp: irresolute] and f-1 is r-
irresolute [resp: irresolute] 
(ix)  g-homeomorphism [resp: spg-homeomorphism] if f 
is bijective g-continuous [resp: spg-continuous] and   f -1 
is g-continuous [resp: spg-continuous] 
(x)   gc-homeomorphism [resp: spgc-homeomorphism] if 
f is bijective g-irresolute [resp: spg-irresolute] and    f -1 is 
g-irresolute[resp: spg-irresolute] 



[Balasubramanian, 2(11): November, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3088-3098] 

 

Definition 1.5: X is said to be 
(i)   compact [resp: nearly compact, semi-compact, g-
compact, spg-compact] if every open[resp: regular-open, 
semi-open, g-open, spg-open] cover has a finite sub 
cover. 
(ii)  T0 [resp: rT0, sT0, g0] space if for each x ≠ y∈X  ∃ 
U∈τ(X)[resp: RO(X); SO(X); GO(X)] containing either 
x or y.  
(iii) T 1 [resp: rT1, sT1, g1] space if for each x ≠ y∈X ∃ U, 
V∈τ(X)[resp: RO(X); SO(X); GO(X)] such that x∈U-V 
and y∈V - U.  
(iv)  T2 [resp: rT2, sT2, g2] space if for each x ≠ y∈X ∃ U, 
V∈τ(X)[resp: RO(X); SO(X); GO(X)] such that x∈U; 
y∈V and U∩V = φ.  
(v)   T1/2 [resp: rT1/2, pT1/2] if every generalized [resp: 
regular generalized, pre-generalized] closed set is closed 
[resp: regular-closed, pre-closed]  
 
Spg-Continuity and Product Spaces 
Theorem 2.1: Let Y and {Xα:α∈ I} be Topological 
Spaces. Let f: Y→ ΠXα be a function. If f is spg-
continuous, then πα• f: Y→ Xα is spg-continuous. 
Proof: Suppose f is spg-continuous. Since πα: ΠXβ→ Xα 
is continuous for each α∈ I, it follows that πα•f is spg-
continuous. 
 
Converse of the above theorem is not true in general. 
   
Theorem 2.2: If Y is rT1/2 and {Xα:α∈ I} be Topological 
Spaces. Let f: Y→ ΠXα be a function, then f is spg-
continuous iff πα• f: Y→ Xα is spg-continuous. 
 
Corollary 2.3: Let fα: Xα→ Yα be a function and let f: 
ΠXα→ ΠYα be defined by f(xα)α∈I = (fα (xα))α∈I. If f is 
spg-continuous then each fα is spg-continuous. 
 
Corollary 2.4: For each α, let Xα be rT1/2 and let fα: 
Xα→Yα be a function and let f: ΠXα→ ΠYα be defined 
by f(xα)α∈I = (fα (xα))α∈I, then f is spg-continuous iff each 
fα is spg-continuous. 
   
Spgi Spaces i = 0, 1, 2 
Definition 3.1: X is said to be 
(i) a spg0 space if for each pair of distinct points x, y of 
X, there exists a spg-open set G containing either of the 
point x or y. 
(ii) a spg1 space if for each pair of distinct points x, y of 
X there exists a spg-open set G containing x but not y 
and a spg-open set H containing y but not x. 
(iii)a spg2 space if for each pair of distinct points x, y of 
X there exists disjoint spg-open sets G and H such that G 
containing x but not y and H containing y but not x. 

Note 2: X is spg2 → X is spg1 → X is spg0. 
 
Example 3.1: Let X = {a, b, c} and 
(i) τ = {φ, {a, c}, X} then X is spgi but not rT0 and T0, i = 
0, 1, 2. 
(ii) τ = {φ, {a}, {a, c}, X} then X is not spgi for i = 0, 1, 
2. 
 
Remark 3.1: If X is pT1/2 then pTi and spgi are one and 
the same for i = 0,1,2. 
 
Theorem 3.1: 
(i) Every [resp: regular open] open subspace of spgi 
space is spgi for i = 0, 1, 2. 
(ii)The product of spgi spaces is again spgi for i = 0, 1, 2. 
(iii) spg-continuous image of Ti spaces is spgi for i = 0, 1, 
2. 
(iv) spg-continuous image of rTi spaces is spgi for i = 0, 
1, 2. 
 
Theorem 3.2: 
(i) X is spg0 iff ∀ x∈ X, ∃ U∈ SPGO(X) containing x 
such that the subspace U is spg0. 
(ii)X is spg0 iff distinct points of X have disjoint spg-
closures. 
 
Theorem 3.3: The following are equivalent: 
(i)  X is spg1. 
(ii) Each one point set is spg-closed. 
(iii)Each subset of X is the intersection of all spg-open 
sets containing it. 
(iv) For any x∈ X, the intersection of all spg-open sets 
containing the point is the set {x}. 
 
Theorem 3.4: If X is spg1 then distinct points of X have 
disjoint spg-closures. 
 
Theorem 3.5: Suppose x is a spg-limit point of a subset 
of A of a spg1 space X. Then every neighborhood of x 
contains infinitely many distinct points of A. 
 
Theorem 3.6: X is spg2 iff the intersection of all spg-
closed, spg-neighborhoods of each point of the space is 
reduced to that point. 
Proof: Let X be spg2 and x∈X, then for each y ≠ x in X, 
∃ U, V∈SPGO(X) such that x∈U, y∈V and U∩V = φ. 
Since x∈U-V, hence X-V is a spg-closed, spg-
neighborhood of x to which y does not belong. 
Consequently, the intersection of all spg-closed, spg-
neighborhoods of x is reduced to {x}. 
   Conversely let y ≠ x in X, then by hypothesis there 
exists a spg-closed, spg-neighborhood U of x such that 
y∉U. Now ∃ G∈SPGO(X) such that x∈G⊂U. Thus G 
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and X-U are disjoint spg-open sets containing x and y 
respectively. Hence X is spg2. 
 
Theorem 3.7: If to each point x∈X, there exist a spg-
closed, spg-open subset of X containing x which is also a 
spg2 subspace of X, then X is spg2. 
Proof: Let x∈X, U a spg-closed, spg-open subset of X 
containing x and which is also a spg2 subspace of X, then 
the intersection of all spg-closed, spg-neighborhoods of x 
in U is reduced to {x}. U being spg-closed, spg-open, 
these are spg-closed, spg-neighborhoods of x in X. Thus 
the intersection of all spg-closed, spg-neighborhoods of x 
is reduced to {x}. Hence by Theorem 3.6, X is spg2. 
 
Theorem 3.8: If X is spg2 then the diagonal  ∆ in X×X is 
spg-closed. 
Proof: Let (x, y)∈X×X-∆, then x ≠ y. Since X is spg2 ∃ 
U; V∈SPGO(X) such that x∈U; y∈V and U∩V = φ. 
U∩V = φ implies (U×V)∩∆ = φ and therefore 
(U×V)⊂X×X-∆. Further (x, y)∈(U×V) and (U×V) is spg-
open in X× X gives X× X-∆ is spg-open. Hence ∆ is spg-
closed. 
 
Theorem 3.9: In spg2-space, spg-limits of sequences, if 
exists, are unique. 
 
Theorem 3.10: In a spg2 space, a point and disjoint spg-
compact subspace can be separated by disjoint spg-open 
sets. 
Proof: Let X be a spg2 space, x∈X and C a spg-compact 
subspace of X not containing x. Let y∈C then for     x ≠ y 
in X, there exist disjoint spg-open neighborhoods Gx and 
Hy. Allowing this for each y in C, we obtain a class {H y} 
whose union covers C; and since C is spg-compact, some 
finite subclass {Hi, i = 1 to n} covers C. If Gi is spg-
neighborhood of x corresponding to Hi, we put G = ∪i=1-

nGi and H = ∩i=1-nHi, satisfying the required properties. 
 
Corollary 3.1: 
(i)  In a T1 [resp: rT1; g1] space, each singleton set is spg-
closed. 
(ii) If X is T 1 [resp: rT1; g1] then distinct points of X have 
disjoint spg-closures. 
(iii)If X is T 2 [resp: rT2; g2] then the diagonal ∆in X×X is 
spg-closed. 
(iv) Show that in a T2 [resp: rT2; g2] space, a point and 
disjoint compact[resp: nearly-compact; g-compact] 
subspace can be separated by disjoint spg-open sets 
 
Theorem 3.11: Every spg-compact subspace of a spg2 
space is spg-closed. 
Proof: Let C be spg-compact subspace of a spg2 space. If 
x be any point in Cc, by above Theorem x has a spg-

neighborhood G such that x∈ G ⊂ Cc. This shows that Cc 
is the union of spg-open sets and therefore Cc is spg-
open. Thus C is spg-closed. 
 
Corollary 3.2: Every compact [resp: nearly-compact; g-
compact] subspace of a T2 [resp: rT2; g2] space is spg-
closed. 
 
Theorem 3.12: If f: X→ Y is injective, spg-irresolute 
and Y is spgi then X is spgi, i = 0, 1, 2. 
 Proof: Let x ≠ y∈X, then ∃ a spg-open set Vx⊂Y such 
that f(x)∈Vx and f(y)∉Vx and ∃ a spg-open set Vy⊂ Y 
such that  f(y)∈Vy and f(x)∉Vy with f(x) ≠ f(y). By spg-
irresoluteness of f, f -1(Vx) is spg-open in X such that x∈f 
-1(Vx); y∉f -1(Vx) and f -1(Vy) is spg-open in X such that 
y∈f -1(Vy); x∉f -1(Vy). Hence X is spg2 
 
 Similarly one can prove the remaining part of the 
Theorem. 
  
Corollary 3.3: 
(i)  If f: X→ Y is injective, spg-continuous and Y is Ti 
then X is spgi, i = 0, 1, 2. 
(ii) If f: X→ Y is injective, r-irresolute[r-continuous] and 
Y is rTi then X is spgi, i = 0, 1, 2. 
(iii)The property of being a space is spg0 is a spg-
Topological property.  
(iv) Let f: X → Y is a spgc-homeomorphism, then X is 
spgi if Y is spgi, i = 0, 1, 2.  
 
Theorem 3.13: Let X be T1 and f: X → Y be spg-closed 
surjection. Then X is spg1. 
 
Theorem 3.14: Every spg-irresolute map from a spg-
compact space into a spg2 space is spg-closed. 
Proof: If f: X → Y is spg-irresolute where X is spg-
compact and Y is spg2. Let C⊂X be closed, then C⊂X is   
spg-closed and hence C is spg-compact and so f(C) is 
spg-compact. But then f(C) is spg-closed in Y. Hence the 
image of any spg-closed set in X is spg-closed set in Y. 
Thus f is spg-closed. 
 
Theorem 3.15: Any spg-irresolute bijection from a spg-
compact space onto a spg2 space is a spgc-
homeomorphism. 
Proof: Let f: X → Y be a spg-irresolute bijection from a 
spg-compact space onto a spg2 space. Let G be a spg-
open subset of X. Then X-G is spg-closed and hence f(X-
G) is spg-closed. Since f is bijective f(X-G) = Y-f(G). 
Therefore f(G) is spg-open in Y. This means that f is spg-
open. Hence f is bijective spg-irresolute and spg-open. 
Thus f is spgc-homeomorphism. 
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Corollary 3.4: Any spg-continuous bijection from a spg-
compact space onto a spg2 space is a spg-
homeomorphism. 
  
Theorem 3.16: The following are equivalent:  
(i)  X is spg2. 
(ii) For each pair x ≠ y∈ X ∃ a spg-open, spg-closed set 
V such that x∈V and y∉V, and 
(iii)For each pair x ≠ y∈ X ∃ f: X→ [0, 1] such that f(x) 
= 0 and f(y) = 1 and f is spg-continuous. 
 
Theorem 3.17: If f: X→ Y is spg-irresolute and Y is 
spg2 then 
(i) the set A = {(x1, x2): f(x1) = f(x2)} is spg-closed in X× 
X. 
(ii)G(f), Spgaph of f, is spg-closed in X× Y. 
Proof: (i) Let A = {(x1, x2): f(x1) = f(x2)}. If (x 1, 
x2)∈X×X-A, then f(x1) ≠ f(x2) ⇒ ∃ disjoint V1 and 
V2∈SPGO(Y) such that  f(x1)∈V1 and f(x2)∈V2, then by 
spg-irresoluteness of f, f-1(V j)∈SPGO(X, xj) for each j. 
Thus (x1, x2)∈f-1(V1)×f-1(V2)∈SPGO(X×X). Therefore f-
1(V1)×f-1(V2)⊂X×X-A ⇒ X×X-A is spg-open. Hence A 
is spg-closed.  
 
(ii) Let (x, y)∉G(f) ⇒ y ≠ f(x) ⇒ ∃ disjoint spg-open sets 
V and W such that  f(x)∈V and y∈W. Since f is spg-
irresolute, ∃ U∈SPGO(X) such that x∈U and f(U)⊂W. 
Therefore we obtain (x, y)∈U×V⊂X×Y, where 
U×V⊂X×Y-G(f). Hence X×Y-G(f) is spg-open. Hence 
G(f) is spg-closed in X×Y.  
 
Theorem 3.18: If f: X→ Y is spg-open and A = {(x1, x2): 
f(x1) = f(x2)} is closed in X×X. Then Y is spg2. 
 
Theorem 3.19: Let Y and {Xα:α∈ I} be Topological 
Spaces. If f: Y→ Π Xα be a spg-continuous function and 
Y is rT1/2, then Π Xα and each Xα are spgi, i = 0,1,2. 
 
Problem: If Y be a spg2 space and A be regular-open 
subspace of X. If f: (A, τ/A) → (Y,σ) is spg-irresolute. Is 
there exists any extension f: (X, τ) → (Y, σ). 
 
Theorem 3.20: Let X be an arbitrary space, R an 
equivalence relation in X and p: X → X/R the 
identification map. If R⊂ X× X is spg-closed in X× X 
and p is spg-open map, then X/R is spg2. 
Proof: Let p(X), p(y) be distinct members of X/R. Since 
x and y are not related, R⊂ X× X is spg-closed in X× X. 
There are spg-open sets U and V such that x∈ U, y∈ V 
and U× V⊂ Rc. Thus {p(U), p(V)} are disjoint and also 
spg-open in X/R since p is spg-open. 
 

Theorem 3.21: The following four properties are 
equivalent: 
(i)  X is spg2 
(ii) Let x∈ X. For each y  ≠ x, ∃ U∈ SPGO(X) such that 
x∈ U and y∉ spgcl(U) 
(iii)For each x∈ X, ∩{spgcl(U)/U∈ SPGO(X) and x∈ 
U} = {x}. 
(iv) The diagonal ∆ = {(x, x)/x∈X} is spg-closed in X× 
X. 
Proof: (i) ⇒ (ii) Let x∈ X and y  ≠ x. Then there are 
disjoint spg-open sets U and V such that x∈ U and y∈ V. 
Clearly V c is spg-closed, spgcl(U) ⊂ Vc, y∉Vc and 
therefore y∉ spgcl(U).   
(ii) ⇒ (iii) If y ≠ x, then ∃ U∈SPGO(X) s.t. x∈U and 
y∉spgcl(U). So y∉∩{spgcl(U)/U∈SPGO(X) and x∈U}. 
(iii) ⇒ (iv) We prove ∆c is spg-open. Let (x, y) ∉∆. Then 
y ≠ x and ∩{spgcl(U)/U∈SPGO(X) and x∈U} = {x} 
there is some U∈SPGO(X) with x∈U and y∉ spgcl(U). 
Since U∩(spgcl(U))c = φ, U×(spgcl(U))c is a spg-open 
set such that (x, y)∈U×(spgcl(U))c⊂∆c. 
(iv) ⇒ (i) y ≠ x, then (x, y)∉∆ and thus there exist spg-
open sets U and V such that (x, y)∈U×V and (U×V)∩∆ 
= φ. Clearly, for the spg-open sets U and V we have; 
x∈U, y∈V and U∩V = φ. 
 
Spgg3 and Spgg4 spaces 
Definition 4.1: X is said to be 
(i)  a spg3 space if for every spg-closed sets F and a point 
x∉F ∃ disjoint U, V∈PO(X)such that  F⊆ U; x∈ V 
(ii) a spgg3 space if for every spg-closed sets F and x∉ F 
∃ disjoint U, V∈SPGO(X)such that  F⊆U; x∈V 
(iii)a spg4 space if for each pair of disjoint spg-closed 
sets F and H ∃ disjoint U, V∈PO(X) s.t. F⊆U; H⊆V 
(iv) a spgg4 space if for each pair of disjoint spg-closed 
sets F and H ∃ disjoint U, V∈SPGO(X) s.t. F⊆U; H⊆V 
 
Note: rTi → spgi  → spggi , i = 3, 4. but the converse is 
not true in general. 
 
Example 4.1: Let X = {a, b, c} and 
(i) τ = {φ, {a}, {b, c}, X} then X is spggi. 
(ii) τ = {φ, {a}, X} then X is not spggi, spgi and rTi for i 
= 3, 4. 
 
Lemma 4.1: X is spg-regular iff X is nearly-regular and 
rT1/2. 
Proof: X is spg-regular, then obviously X is nearly-
regular. Let A⊆X be spg-closed. For each x∉A ∃ Vx∈ 
SPGO(X, x) such that Vx∩A = φ. If V =  ∪{V x:x∉ A}, 
then V is spg-open and V = X-A. Hence A is spg-closed 
implies X is rT1/2. 
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Theorem 4.1: If X is spg3. Then for each x∈X and each 
U∈SPGO(X, x) ∃ a spg-neighborhood V of x such that 
spgcl(A)⊂U. 
Proof: Let x∈X and U a spg-neighborhood of x. Let B = 
X - U, then B is spg-closed and by spg-regularity of X, ∃ 
disjoint V, W∈SPGO(X) such that x∈V and B⊆W. Then 
spgcl(V)∩B = φ ⇒ spgcl(V)⊆X - B. 
 
Theorem 4.2: The following are equivalent: 
(i)  X is spg3. 
(ii) For every point x∈X and for every G∈SPGO(X, x), 
∃ U∈SPGO(X) such that x∈U⊆ spgcl(U) ⊆ G. 
(iii)For every spg-closed set F, the intersection of al spg-
closed spg-neighborhoods of F is exactly F. 
(iv) For every set A and B∈SPGO(X) such that A∩B ≠ 
φ, ∃ G∈SPGO(X)such that A∩G  ≠ φ and spgcl(G)⊆B. 
(v) For every A ≠ φ and B∈SPGC(X) with A∩B = φ, ∃ 
disjoint G; H∈SPGO(X) such that A⊆G and B⊆H. 
  
Theorem 4.3: If X is spgg3. Then for each x∈X and each 
U∈SPGO(X, x), ∃ V∈SPGO(X, x) such that 
spgcl(A)⊂U. 
Proof: Let x∈ X and U a spg-neighborhood of x. Let B = 
X - U, then B is spg-closed and by spgg-regularity of X, 
∃ disjoint V, W∈SPGO(X) such that x∈V and B⊆W. 
Then spgcl(V)∩B = φ ⇒ spgcl(V)⊆X - B. 
 
Corollary 4.1: If X is T3 [resp: rT3; g3]. Then for each 
x∈ X and each spg-open neighborhood U of x there 
exists a spg-open neighborhood V of x such that 
spgcl(A)⊂U. 
 
Theorem 4.4: If f: X→ Y is spg-closed, spg-irresolute 
bijection. Then X is spgg3 iff Y is spgg3. 
Proof: Let F be closed set in X and x∉F, then f(x)∉f(F) 
and f(F) is spg-closed in Y. By spgg3 of Y, ∃ V; W∈ 
SPGO(y) such that f(X)∈V and f(F)⊆W. Hence x∈f -1(V) 
and F⊆f -1(W), where f -1(V) and f -1(W) are disjoint spg-
open sets in X (by spg-irresoluteness of f). Hence X is 
spgg3. 
 Conversely, X be spgg3 and K any spg-closed in 
Y with y∉K, then f -1(K) is spg-closed in X such that  f -

1(y) ∉ f -1(K). By spgg3 of X, ∃ disjoint V, W∈SPGO(X) 
such that f -1(y)∈V and f -1(K)⊆W. Hence y∈ f(V) and 
K⊆ f(W) such that  f(V) and f(W) are disjoint spg-open 
sets in X. Thus Y is spgg3 
 
Theorem 4.5: X is spg-normal iff for every spg-closed 
set F and a spg-open set G containing A, there exists a 
spg-open set V such that F⊆ V⊆ spgcl(V) ⊆ G   
 

Theorem 4.6:  X is spg-normal iff for every pair of 
disjoint spg-closed sets A and B, there exist disjoint spg-
open sets U and V such that A⊆U and B⊆V. 
Proof:  Necessity: Follows from the fact that every spg-
open set is spg-open. 

Sufficiency: Let A, B be are disjoint spg-closed 
sets and U, V are disjoint spg-open sets such that A⊆U 
and B⊆V. Since U and V are spg-open sets, A⊆U and 
B⊆V ⇒ A⊆spg(U)o and B⊆spg(V)o. Hence spg(U)o and 
spg(V)o are disjoint spg-open sets satisfying the axiom of 
spg-normality.   
 
Theorem 4.7: The following are equivalent: 
(i)  X is spg-normal 
(ii) For any pair of disjoint closed sets A and B, ∃ 
disjoint U; V∈SPGO(X) such that A⊆ U and B⊆ V 
(iii)For every closed set A and an open B containing A, ∃ 
U∈SPGO(X) such that A⊆ U⊆ spgcl(U) ⊆ B   
(iv) For every closed set A and a spg-open B containing 
A, ∃ U∈SPGO(X) such that A⊆ U⊆ spgcl(U) ⊆ (B)o 
(v) For every spg-closed set A and every open B 
containing A, ∃ U∈SPGO(X) such that 
A⊆spgcl(A)⊆U⊆spgcl(U) ⊆ B. 
 
Theorem 4.8: The following are equivalent: 
(i)  X is spg-normal 
(ii) For every A∈SPGC(X) and every spg-open set 
containing A, there exists a spg-clopen set V such that 
A⊆V⊆U. 
 
Theorem 4.9: Let X be an almost normal space and 
F∩A = φ where F is regularly closed and A is spg-
closed, then ∃ disjoint U; V∈τ such that F⊆U; B⊆V. 
 
Theorem 4.10: X is almost normal iff for every disjoint 
sets F and A where F is regular closed and A is closed, ∃ 
disjoint spg-open sets in X such that F⊆U; B⊆V. 
Proof: Necessity: Follows from the fact that every open 
set is spg-open. 
 
Sufficiency: Let F, A be disjoint regular closed set F and 
a closed set A, ∃ disjoint spg-open sets in X such that  
F⊆U; B⊆V. Hence F⊆Uo; B⊆Vo, where Uo and Vo are 
disjoint open sets. Hence X is almost regular. 
 
Theorem 4.11: The following are equivalent: 
(i)  X is almost normal. 
(ii) For every regular closed set A and for every spg-open 
set B containing A, ∃ U∈τ s.t. A⊆U⊆cl(U)⊆ B. 
(iii)For every spg-closed set A and for every regular-
open set B containing A, ∃ U∈τ s.t. A⊆U⊆cl(U)⊆ B. 
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(iv) For every pair of disjoint regularly closed set A and 
spg-closed set B, ∃ U; V∈τ s.t. cl(U)∩cl(V) = φ. 
 
Spg-Ri spaces; i = 0,1 
Definition 5.1: Let x∈ X. Then 
(i) spg-kernel of x is defined and denoted by Ker{spg}{x} 
= ∩{U:U ∈ SPGO(X) and x∈ U} 
(ii)Ker{spg}F = ∩{U: U ∈ SPGO(X) and F⊂ U} 
 
Lemma 5.1: Let A⊂ X, then Ker{spg}{A} = {x ∈ X: 
spgcl{x}∩ A  ≠ φ.} 
 
Lemma 5.2: Let x∈ X. Then y∈ Ker{spg}{x} iff x ∈ 
spgcl{y}. 
Proof: Suppose that y∉Ker{spg}{x}. Then ∃ V∈SPGO(X) 
containing x such that  y∉V. Therefore we have 
x∉spgcl{y}. The proof of converse part can be done 
similarly. 
 
Lemma 5.3: For any points x ≠ y∈X, the following are 
equivalent: 
(i) Ker{spg}{x}  ≠ Ker{spg}{y};  (ii) spgcl{x}  
≠ spgcl{y}. 
Proof: (i) ⇒ (ii): Let Ker{spg}{x} ≠ Ker{spg}{y}, then ∃ 
z∈X such that  z∈Ker{spg}{x} and z∉Ker{spg}{y}. From 
z∈Ker{spg}{x} it follows that {x} ∩spgcl{z} ≠ φ ⇒ 
x∈spgcl{z}. By z∉Ker{spg}{y}, we have {y}∩spgcl{z} = 
φ. Since x∈spgcl{z}, spgcl{x}⊂spgcl{z} and 
{y} ∩spgcl{x} = φ. Therefore spgcl{x} ≠ spgcl{y}. Now           
Ker{spg}{x} ≠ Ker{spg}{y} ⇒ spgcl{x} ≠ spgcl{y}. 
(ii) ⇒ (i): If spgcl{x} ≠ spgcl{y}. Then ∃ z∈X such that 
z∈spgcl{x} and z∉spgcl{y}. Then ∃ a spg-open set 
containing z and therefore containing x but not y, 
namely, y∉ Ker{spg}{x}. Hence Ker{spg}{x}  ≠ 
Ker{spg}{y}. 
 
Definition 5.2: X is said to be 
(i)  spg-R0 iff spgcl{x} ⊆ G whenever x∈ G∈ SPGO(X). 
(ii) weakly spg-R0 iff ∩ spgcl{x} = φ. 
(iii) spg-R1 iff for x,y∈X such that  spgcl{x}  ≠ spgcl{y} 
∃ disjoint U; V∈SPGO(X) such that spgcl{x}⊆U and 
spgcl{y}⊆V. 
 
Example 5.1: Let X = {a, b, c} and τ = {φ, {a}, {b, c}, 
X} then X is spgR0. 
 
Remark 5.1: 
(i)  r-Ri ⇒ Ri ⇒ g Ri ⇒ spgRi, i = 0, 1. 
(ii) Every weakly-R0 space is weakly spg R0. 
 
Lemma 5.1: Every spgR0 space is weakly spgR0. 
 

Converse of the above Theorem is not true in general by 
the following Examples. 
 
Example 5.2: Let X = {a, b, c, d} and τ  = {φ, {b}, {a, 
b}, {b, c}, {a, b, c}, X}, then X is weakly spgR0 but not 
spgRi, i = 0 ,1. 
 
Theorem 5.1: Every spg-regular space X is spg2 and 
spg-R0. 
Proof: Let X be spg-regular and let x  ≠ y∈ X. By 
Lemma 4.1, {x} is either spg-open or spg-closed. If {x} 
is spg-open, {x} is spg-open and hence spg-clopen. Thus 
{x} and X - {x} are separating spg-open sets. Similar 
argument, for {x} is spg-closed gives {x} and X - {x} 
are separating spg-closed sets. Thus X is spg2 and spg-
R0. 
 
Theorem 5.2: X is spg-R0 iff given x  ≠ y∈ X; spgcl{x}  
≠ spgcl{y}. 
Proof: Let X be spg-R0 and let let x, ≠ y∈ X. Suppose U 
is a spg-open set containing x but not y, then y∈ 
spgcl{y}⊂ X-U and so x∉ spgcl{y}. Hence spgcl{x} ≠ 
spgcl{y}. 
 
Conversely, let x, ≠ y∈ X such that spgcl{x} ≠ 
spgcl{y}⇒ spgcl{x}⊂ X-spgcl{y} = U(say) a spg-open 
set in X. This is true for every spgcl{x}. Thus ∩ 
spgcl{x}⊆ U where x∈ spgcl{x}⊆ U∈ SPGO(X), which 
in turn implies ∩ spgcl{x}⊆ U where x∈ U∈ SPGO(X). 
Hence X is spgR0. 
 
Theorem 5.3: X is weakly spgR0 iff Ker{spg}{x} ≠ X for 
any x∈X. 
Proof: Let x0∈ X such that ker{spg}{x 0} = X. This means 
that x0 is not contained in any proper spg-open subset of 
X. Thus x0 belongs to the spg-closure of every singleton 
set. Hence x0∈∩spgcl{x}, a contradiction. 
 
Conversely assume Ker{spg}{x} ≠ X for any x∈ X. If 
there is an x0∈ X such that x0∈∩{spgcl{x}}, then every 
spg-open set containing x0 must contain every point of X. 
Therefore, the unique spg-open set containing x0 is X. 
Hence Ker{spg}{x 0} = X, which is a contradiction. Thus X 
is weakly spg-R0. 
 
Theorem 5.4: The following statements are equivalent: 
(i)  X is spg-R0 space. 
(ii) For each x∈ X, spgcl{x}⊂ Ker{spg}{x} 
(iii)For any spg-closed set F and a point x∉ F, ∃ U∈ 
SPGO(X) such that x∉U and F⊂U. 
(iv) Each spg-closed set F can be expressed as F = ∩{G: 
G is spg-open and F⊂G}. 
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(v)  Each spg-open set G can be expressed as G = ∪{A: 
A is spg-closed and A⊂G}. 
(vi) For each spg-closed set F, x∉ F implies spg-cl{x}∩ 
F = φ. 
Proof:  (i) ⇒ (ii) For any x∈ X, we have Ker{spg}{x} = 
∩{U: U∈SPGO(X) and x∈U}. Since X is spg-R0, each 
spg-open set containing x contains spgcl{x}. Hence 
spgcl{x}⊂ Ker{spg}{x}. 
(ii) ⇒ (iii) Let x∉F∈SPGC(X). Then for any y∈F; 
spgcl{y}⊂F and so x∉spgcl{y}⇒ y∉spgcl{x} that is           
∃ Uy∈SPGO(X) such that y∈Uy and x∉Uy ∀ y∈F. Let U 
= ∪{U y: Uy is spg-open, y∈Uy  and x∉Uy}. Then U is 
spg-open such that x∉U and F⊂U. 
(iii) ⇒ (iv) Let F be any spg-closed set and N = ∩{G: G 
is spg-open and F⊂ G}. Then F⊂N → (1). 
Let x∉ F, then by (iii) ∃ G∈SPGO(X) such that x∉G and 
F⊂G.  
Hence x∉N which implies x∈N ⇒ x∈F. Hence N⊂F → 
(2). 
Therefore from (1) and (2), each spg-closed set F = ∩{G: 
G is spg-open and F⊂G} 
(iv) ⇒ (v) obvious. 
(v) ⇒ (vi) Let x∉F∈SPGC(X). Then X-F = G is a spg-
open set containing x. Then by (v), G can be expressed 
as the union of spg-closed sets A contained in G, and so 
there is an M∈SPGC(X) such that x∈M⊂G; and hence 
spgcl{x}⊂G which implies spgcl{x}∩ F = φ. 
(vi) ⇒ (i) Let x∈G∈SPGO(X). Then x∉(X-G), which is 
a spg-closed set. Therefore by (vi) spgcl{x}∩(X-G) = φ, 
which implies that spgcl{x}⊆ G. Thus X is spgR0 space. 
 
Theorem 5.5: Let f: X → Y be a spg-closed one-one 
function. If X is weakly spg-R0, then so is Y. 
 
Theorem 5.6: If X is weakly spg-R0, then for every 
space Y, X× Y is weakly spg-R0. 
Proof: ∩ spgcl{(x,y)} ⊆∩{spgcl{x} × spgcl{y}} = ∩ 
[spgcl{x}] × [spgcl{y}] ⊆ φ× Y = φ. Hence X× Y is 
spgR0. 
 
Corollary 5.1: 
(i)  If X and Y are weakly spgR0, then X× Y is weakly 
spgR0. 
(ii) If X and Y are (weakly-)R0, then X× Y is weakly 
spgR0. 
(iii)If Xand Y are spgR0, then X× Y is weakly spgR0. 
(iv) If X is spgR0 and Y are weakly R0, then X× Y is 
weakly spgR0. 
 
Theorem 5.7: X is spgR0 iff for any x, y∈ X, spgcl{x} ≠ 
spgcl{y}⇒ spgcl{x}∩ spgcl{y} = φ. 

Proof: Let X is spgR0 and x, y∈X such that spgcl{x} ≠ 
spgcl{y} .Then ∃ z∈spgcl{x} such that z∉spgcl{y} (or 
z∈spgcl{y}) such that z∉spgcl{x}. There exists 
V∈SPGO(X) such that y∉V and z∈V; hence x∈V. 
Therefore, x∉spgcl{y}. Thus x∈[spgcl{y}] c∈SPGO(X), 
which implies spgcl{x}⊂[spgcl{y}] c and spgcl{x}∩ 
spgcl{y} = φ.  The proof for otherwise is similar. 

Sufficiency: Let x∈V∈SPGO(X). We show that 
spgcl{x}⊂V. Let y∉V, i.e., y∈Vc. Then x ≠ y and 
x∉spgcl{y}. Hence spgcl{x} ≠ spgcl{y}. But spgcl{x}∩ 
spgcl{y} = φ. Hence y∉ spgcl{x}. Therefore spgcl{x}⊂ 
V. 
 
Theorem 5.8: X is spgR0 iff for any points x, y∈X, 
Ker{spg}{x} ≠ Ker{spg}{y} ⇒ Ker{spg}{x} ∩Ker{spg}{y} = 
φ. 
Proof: Suppose X is spgR0. Thus by Lemma 5.3 for any 
x, y∈X if Ker{spg}{x} ≠ Ker{spg}{y} then spgcl{x} ≠ 
spgcl{y}. Assume that z∈Ker{spg}{x} ∩Ker{spg}{y}. By 
z∈Ker{spg}{x} and Lemma 5.2, it follows that 
x∈spgcl{z}. Since x∈spgcl{z}, spgcl{x} = spgcl{z}. 
Similarly, we have spgcl{y} = spgcl{z} = spgcl{x}. This 
is a contradiction. Therefore, we have Ker{spg}{x} ∩ 
Ker{spg}{y} = φ. 

Conversely, let x, y∈X, s.t. spgcl{x} ≠ 
spgcl{y}, then by Lemma 5.3, Ker{spg}{x} ≠ Ker{spg}{y}. 
Hence by hypothesis Ker{spg}{x} ∩Ker{spg}{y} = φ which 
implies spgcl{x}∩spgcl{y} = φ Because z∈spgcl{x} 
implies that x∈Ker{spg}{z} and therefore 
Ker{spg}{x} ∩Ker{spg}{z} ≠ φ Therefore by Theorem 5.7 X 
is a spgR0 space. 
 
Theorem 5.9: The following properties are equivalent: 
(i) X is a spg-R0 space. 
(ii) For any A  ≠ φ and G∈SPGO(X) such that A∩G ≠ φ 
∃ F∈SPGC(X)such that A∩F ≠ φ and F⊂G. 
Proof: (i) ⇒ (ii): Let A ≠ φ and G∈SPGO(X) such that 
A∩G ≠ φ. There exists x∈A∩G. Since x∈G∈SPGO(X), 
spgcl{x}⊂G. Set F = spgcl{x}, then F∈SPGC(X), F⊂G 
and A∩F  ≠ φ 
(ii) ⇒ (i): Let G∈ SPGO(X) and x∈ G. By (2), 
spgcl{x}⊂ G. Hence X is spg-R0. 
 
Theorem 5.10: The following properties are equivalent: 
(i) X is a spg-R0 space; 
(ii) x∈ spgcl{y} iff y ∈spgcl{x}, for any points x and y in 
X. 
 Proof: (i) ⇒ (ii): Assume X is spgR0. Let x∈spgcl{y} 
and D be any spg-open set such that y∈D. Now by 
hypothesis, x∈D. Therefore, every spg-open set which 
contain y contains x. Hence y∈spgcl{x}. 
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(ii) ⇒ (i): Let U be a spg-open set and x∈U. If y∉ U, 
then x∉spgcl{y} and hence y∉spgcl{x}. This implies 
that spgcl{x}⊂U. Hence X is spgR0. 
 
Theorem 5.11: The following properties are equivalent: 
(i) X is a spgR0 space; 
(ii) If F is spg-closed, then F = Ker{spg}(F); 
(iii) If F is spg-closed and x∈ F, then Ker{spg}{x} ⊆F; 
(iv) If x∈ X, then Ker{spg}{x} ⊂spgcl{x}. 
Proof: (i) ⇒ (ii): Let x∉F∈SPGC(X) ⇒ (X-
F)∈SPGO(X) and contains x. For X is spgR0, 
spgcl({x})⊂(X-F). Thus spgcl({x})∩ F = φ and 
x∉Ker{spg}(F). Hence Ker{spg}(F) = F. 
(ii) ⇒ (iii): A⊂B ⇒ Ker{spg}(A)⊂Ker{spg}(B). Therefore, 
by (2) Ker{spg}{x} ⊂ Ker{spg}(F) = F. 
(iii) ⇒ (iv): Since x∈spgcl{x} and spgcl{x} is spg-
closed, by (3) Ker{spg}{x} ⊂ spgcl{x}. 
(iv) ⇒ (i): Let x∈spgcl{y}. Then by Lemma 5.2 
y∈Ker{spg}{x}. Since x∈spgcl{x} and spgcl{x} is spg-
closed, by (iv) we obtain y∈Ker{spg}{x} ⊆spgcl{x}. 
Therefore x∈spgcl{y} implies y∈spgcl{x}. The converse 
is obvious and X is spgR0. 
 
Corollary 5.2: The following properties are equivalent: 
(i) X is spgR0. 
(ii) spgcl{x} = Ker{spg}{x} ∀ x∈ X. 
Proof: Straight forward from Theorems 5.4 and 5.11. 
 
Recall that a filterbase F is called spg-convergent to a 
point x in X, if for any spg-open set U of X containing x, 
there exists B∈ F such that B⊂ U. 
 
Lemma 5.4: Let x and y be any two points in X such that 
every net in X spg-converging to y spg-converges to x. 
Then x∈ spgcl{y}. 
Proof: Suppose that xn = y for each n∈N. Then {xn} n∈ N 
is a net in spgcl{({y})}. Since {xn} n∈N spg-converges to 
y, then {xn} n∈N spg-converges to x and this implies that 
x∈spgcl{y}. 
 
Theorem 5.12: The following statements are equivalent: 
(i) X is a spgR0 space; 
(ii) If x, y∈X, then y∈spgcl{x} iff every net in X spg-
converging to y spg-converges to x. 
Proof: (i) ⇒ (ii): Let x, y∈X such that y∈spgcl{x}. 
Suppose that {xα} α∈I is a net in X such that {xα} α∈I spg-
converges to y. Since y∈spgcl{x}, by Thm. 5.7 we have 
spgcl{x} = spgcl{y}. Therefore x∈spgcl{y}. This means 
that {xα} α∈I spg-converges to x.  
Conversely, let x, y∈ X such that every net in X spg-
converging to y spg-converges to x. Then x∈ spg-

cl{y}[by 5.4]. By Thm. 5.7, we have spgcl{x} = 
spgcl{y}. Therefore y∈spgcl{x}. 
(ii) ⇒ (i): Let x, y∈X such that spgcl{x}∩ spgcl{y} ≠ φ. 
Let z∈spgcl{x}∩ spgcl{y}. So ∃ a net {xα} α∈I in 
spgcl{x} such that {xα} α∈I spg-converges to z. Since 
z∈spgcl{y}, then {xα} α∈I spg-converges to y. It follows 
that y∈spgcl{x}. Similarly we obtain x∈spgcl{y}. 
Therefore spgcl{x} = spgcl{y}. Hence X is spgR0. 
 
Theorem 5.13:  
(i) Every subspace of spgR1 space is again spgR1. 
(ii)Product of any two spgR1 spaces is again spgR1. 
 
Theorem 5.14: X is spgR1 iff given x  ≠ y∈ X, spgcl{x} 
≠ spgcl{y}. 
 
Theorem 5.15: Every spg2 space is spgR1. 
 
The converse is not true. However, we have the 
following result. 
 
Theorem 5.16: Every spg1 and spgR1 space is spg2. 
Proof: Let x ≠ y∈X. Since X is spg1; {x} and {y} are 
spg-closed sets such that spgcl{x} ≠ spgcl{y}. Since X is 
spgR1, there exists disjoint spg-open sets U and V such 
that x∈U; y∈V. Hence X is spg2. 
 
Corollary 5.3: X is spg2 iff it is spgR1 and spg1. 
 
Theorem 5.17: The following are equivalent 
(i)  X is spg-R1. 
(ii) ∩spgcl{x} = {x}. 
(iii)For any x∈ X, intersection of all spg-neighborhoods 
of x is {x}. 
Proof: (i) ⇒ (ii) Let y ≠ x∈X such that y∈spgcl{x}. 
Since X is spgR1, ∃ U∈SPGO(X) such that y∈U, x∉U or 
x∈U, y∉U. In either case y∉spgcl{x}. Hence ∩spgcl{x} 
= {x}. 
(ii) ⇒ (iii) If y ≠ x∈X, then x∉∩spgcl{y}, so there is a 
spg-open set containing x but not y. Therefore y does not 
belong to the intersection of all spg-neighborhoods of x. 
Hence intersection of all spg-neighborhoods of x is {x}. 
(iii) ⇒ (i) Let x ≠ y∈X. by hypothesis, y does not belong 
to the intersection of all spg-neighborhoods of x and x 
does not belong to the intersection of all spg-
neighborhoods of y, which implies spgcl{x} ≠ spgcl{y}. 
Hence X is spg-R1. 
 
Theorem 5.18: The following are equivalent: 
(i)  X is spg-R1. 
(ii) For each pair x, y∈X with spgcl{x} ≠ spgcl{y}, ∃ a 
spg-open, spg-closed set V s.t. x∈V and y∉V, and 
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(iii)For each pair x, y∈X with spgcl{x} ≠ spgcl{y}, ∃ f: 
X→[0, 1] s.t. f(x) = 0 and f(y) = 1 and f is spg-
continuous. 
Proof: (i) ⇒ (ii) Let x, y∈X with spgcl{x} ≠ spgcl{y}, ∃ 
disjoint U; W∈SPGO(X) such that spgcl{x}⊂U and 
spgcl{y}⊂W and V = spgcl(U) is spg-open and spg-
closed such that x∈V and y∉V. 
(ii) ⇒ (iii) Let x, y∈ X with spgcl{x} ≠ spgcl{y}, and let 
V be spg-open and spg-closed such that x∈V and y∉V. 
Then f: X→ [0, 1] defined by f(z) = 0 if z∈V and f(z) = 1 
if z∉V satisfied the desired properties. 
(iii) ⇒ (i) Let x, y∈ X such that spgcl{x} ≠ spgcl{y}, let 
f: X→ [0, 1] such that f is spg-continuous, f(x) = 0 and 
f(y) = 1. Then U = f -1([0, 1/2)) and V = f -1((1/2, 1]) are 
disjoint spg-open and spg-closed sets in X, such that 
spgcl{x}⊂U and spgcl{y}⊂V. 
 
Theorem 5.19: If X is spg-R1, then X is spg-R0. 
Proof: Let x∈U∈SPGO(X). If y∉U, then spgcl{x} ≠ 
spgcl{y}. Hence, ∃ a spg-open V such that spgcl{y}⊂V 
and x∉V ⇒ y∉spgcl{x}. Thus spgcl{x}⊂U. Therefore X 
is spg-R0. 
 
Theorem 5.20: X is spg-R1 iff for x, y∈ X, Ker{spg}{x} ≠ 
Ker{spg}{y}, ∃ disjoint U; V∈SPGO(X) such that  
spgcl{x}⊂U and spgcl{y}⊂V. 
 
Spg-Ci and spg-Di spaces, i = 0,1,2 
 Definition 6.1: X is said to be a 
(i)  spg-C0 space if for each pair of distinct points x, y of 
X there exists a spg-open set G whose closure contains 
either of the point x or y. 
(ii) spg-C1 space if for each pair of distinct points x, y of 
X there exists a spg-open set G whose closure containing 
x but not y and a spg-open set H whose closure 
containing y but not x. 
(iii)spg-C2 space if for each pair of distinct points x, y of 
X there exists disjoint spg-open sets G and H such that G 
containing x but not y and H containing y but not x. 
 
Note: spg-C2 ⇒  spg-C1 ⇒ spg-C0. Converse need not 
be true in general as shown by the following Example. 
 
Example 6.1: 
(i)  Let X = {a, b, c} and τ = {φ, {b}, {a, c}, X} then X is 
spg-Ci, i = 1, 2. 
(ii) Let X = {a, b, c} and τ = {φ, {a}, X} then X is not 
spg-Ci, i = 0, 1, 2. 
 
Theorem 6.1: 
(i)  Every subspace of spg-Ci space is spg-Ci. 
(ii) Every spgi spaces is spg-Ci. 

(iii)Product of spg-Ci spaces are spg-Ci. 
 
Theorem 6.2: Let (X, τ) be any spg-Ci space and A be 
any non empty subset of X then A is spg-Ci iff (A, τ/A) is 
spg-Ci. 
 
Theorem 6.3: (i) If X is spg-C1 then each singleton set is 
spg-closed. 
(ii)In an spg-C1 space disjoint points of X has disjoint 
spg- closures. 
 
Definition 6.2: A⊂ X is called a spg-Difference(Shortly 
spgD-set) set if there are two U, V∈ SPGO(X) such that 
U ≠ X and A = U-V. 
 
Clearly every spg-open set U different from X is a spgD-
set if A = U and V = φ. 
 
Definition 6.3: X is said to be a 
(i)  spg-D0 if for any pair of distinct points x and y of X 
there exist a spgD-set in X containing x but not y or a 
spgD-set in X containing y but not x. 
(ii) spg-D1 if for any pair of distinct points x and y in X 
there exist a spgD-set of X containing x but not y and a 
spgD-set in X containing y but not x. 
(iii)spg-D2 if for any pair of distinct points x and y of X 
there exists disjoint spgD-sets G and H in X containing x 
and y respectively. 
 
Example 6.2: Let X = {a, b, c} and τ = {φ, {b}, {a, c}, 
X} then X is spgDi, i = 0, 1, 2. 
 
Remark 6.2: (i) If X is rT i, then it is spgi, i = 0, 1, 2 and 
converse is false. 
(ii) If X is spgi, then it is spg{i-1} , i = 1, 2. 
(iii) If X is spgi, then it is spg-Di , i = 0, 1, 2. 
(iv) If X is spg-Di, then it is spg-D{i-1} , i = 1, 2. 
 
Theorem 6.4: The following statements are true: 
(i) X is spg-D0 iff it is spg0. 
(ii) X is spg-D1 iff it is spg-D2. 
 
Corollary 6.1: If X is spg-D1, then it is spg0. 
Proof: Remark 6.1(iv) and Theorem 6.2(i) 
 
Definition 6.4: A point x∈X which has X as the unique 
spg-neighborhood is called spg.c.c point. 
 
Theorem 6.5: For an spg0 space X the following are 
equivalent: 
(i) X is spg-D1; 
(ii) X has no spg.c.c point. 
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Proof: (i) ⇒ (ii) Since X is spg-D1, then each point x of 
X is contained in a spgD-set O = U - V and thus in U. By 
Definition U  ≠ X. This implies that x is not a spg.c.c 
point. 
(ii) ⇒ (i) If X is spg0, then for each x ≠ y∈ X, at least 
one of them, x (say) has a spg-neighborhood U 
containing x and not y. Thus U which is different from X 
is a spgD-set. If X has no spg.c.c point, then y is not a 
spg.c.c point. This means that there exists a spg-
neighborhood V of y such that V  ≠ X. Thus y∈ (V-(U) 
but not x and V-U is a spgD-set. Hence X is spg-D1. 
 
Corollary 6.2: A spg0 space X is spg-D1 iff there is a 
unique spg.c.c point in X. 
Proof: Only uniqueness is sufficient to prove. If x00 and 
y0 are two spg.c.c points in X then since X is spg0, at 
least one of x0 and y0 say x0, has a spg-neighborhood U 
such that x0∈ U and y0∉ U, hence U  ≠ X, x0 is not a 
spg.c.c point, a contradiction. 
  
Remark 6.2: It is clear that an spg0 space X is not spg-
D1 iff there is a unique spg-c.c point in X. It is unique 
because if x and y are both spg.c.c point in X, then at 
least one of them say x has a spg-neighborhood U 
containing x but not y. But this is a contradiction since U  
≠ X. 
 
Definition 6.5: X is spg-symmetric if for x and y in X, x 
∈ spgcl{y} implies y ∈ spgcl{x}. 
 
Theorem 6.6: X is spg-symmetric iff {x} is spgg-closed 
for each x∈ X. 
Proof: Assume that x∈spgcl{y} but y∉spgcl{x}. This 
means that [spgcl{x}]c contains y. This implies that 
spgcl{y}⊂ [spgcl{x}] c. Now [spgcl{x}]c contains x 
which is a contradiction. 
Conversely, suppose that {x}⊂ E∈SPGO(X) but 
spgcl{x}⊄E. This means that spgcl{x} and Ec are not 
disjoint. Let y belongs to their intersection. Now we have 
x∈spgcl{y}⊂Ec and x∉ E. But this is a contradiction. 
 
Corollary 6.3: If X is a spg1, then it is spg-symmetric. 
Proof: In a spg1 space, singleton sets are spg-closed 
(Theorem 2.2(ii)) and therefore spg-closed (Remark 6.3). 
By Theorem 6.6, the space is spg-symmetric. 
 
Corollary 6.4: The following are equivalent: 
(i) X is spg-symmetric and spg0 
(ii) X is spg1. 
Proof: By Corollary 6.3 and Remark 6.1 it suffices to 
prove only (i) ⇒ (ii). Let x ≠ y and by spg0, we may 
assume that x∈G1⊂{y} c for some G1∈SPGO(X).Then 
x∉spgcl{y} and hence y∉spgcl{x}. There exists a 

G2∈SPGO(X) such that y∈G2 ⊂{x} c and X is a spg1 
space. 
 
Theorem 6.7: For a spg-symmetric space X the 
following are equivalent: 
(i) X is spg0;  (ii) X is spg-D1;  (iii) X is spg1. 
Proof: (i) ⇒ (iii) Corollary 6.4 and (iii) ⇒ (ii) ⇒ (i) 
Remark 6.1. 
 
Theorem 6.8: If f: X→ Y is a spg-irresolute surjective 
function and E is a spgD-set in Y, then the inverse image 
of E is a spgD-set in X. 
Proof: Let E be a spgD-set in Y. Then there are spg-open 
sets U1 and U2 in Y such that E = U1 - U2 and U1  ≠ Y. 
By the spg-irresoluteness of f, f -1(U1) and f -1(U2) are 
spg-open in X. Since U1  ≠ Y, we have f -1(U1)  ≠ X 
Hence f -1(E) = f -1(U1)-f 

-1(U2) is a spg-D-set. 
 
Theorem 6.9: If Y is spg-D1 and f: X → Y is spg-
irresolute and bijective, then X is spg-D1. 
Proof: Suppose that Y is a spg-D1 space. Let x and y be 
any pair of distinct points in X. Since f is injective and Y 
is spg-D1, there exist spg-D-sets Gz and G of Y 
containing f(X) and f(y) respectively, such that f(y) ∉Gz 
and f(X) ∉ G. By Theorem 6.8, f -1(Gz) and f -1(G) are 
spg-D-sets in X containing x and y, respectively. This 
implies that X is a spg-D1 space. 
 
Theorem 6.10: X is spg-D1 iff for each pair of distinct 
points x, y in X there exist a spg-irresolute surjective 
function f: X→ Y, where Y is a spg-D1 space such that 
f(x) and f(y) are distinct. 
Proof: Necessity. For every x ≠ y∈ X, it suffices to take 
the identity function on X. 
Sufficiency. Let x and y be any pair of distinct points in 
X. By hypothesis, there exists a spg-irresolute, surjective 
function f of a space X onto a spg-D1 space Y such that 
f(x) ≠ f(y). Therefore, there exist disjoint spg-D-sets Gx; 
Gy⊂ Y such that f(x)∈Gx and f(y)∈G. Since f is spg-
irresolute and surjective, by Theorem 6.8, f -1(Gx) and f -

1(G) are disjoint spg-D-sets in X containing x and y 
respectively. Therefore X is spg-D1 space. 
 
Corollary 6.5: Let {Xα/α∈ I} be any family of 
topological spaces. If Xα is spg-D1 for each α∈I, then the 
product Π Xα is spg-D1. 
 Proof: Let (xα) and (yα) be any pair of distinct points in 
ΠXα. Then there exists an index β∈I s.t. xβ ≠ yβ. The 
natural projection Pβ: ΠXα→Xβ is almost continuous and 
almost open and Pβ ((xα)) = Pβ((yα)). Since Xβ is spg-D1, 
ΠXα is spg-D1. 
 



[Balasubramanian, 2(11): November, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3088-3098] 

 

References 
[1] Ahmad Al.Omari and Mohd. Salmi Md 

Noorani, Regular generalized w-closed sets, 
I.J.M.M.S.Vol(2007). 

[2] S.P.Arya and T.Nour, Characterizations of s-
normal spaces, I.J.P.A.M.,21(8)(1990),717-719.    

[3] S.N. Bairagya and S.P. Baisnab, On structure of 
Generalized open sets, Bull. Cal. Math. Soc., 
79(1987)81-88. 

[4] K. Balachandran, P. Sundaram and H. Maki, On 
generalized continuous maps in Topological 
Spaces, Mem. Fac. Sci. Kochi. 
Univ(Math)12(1991)05-13. 

[5] Chawalit Boonpok-Generalized continuous 
functions from any topological space into 
product, Naresuan University 
journal(2003)11(2)93-98. 

[6] Chawalit Boonpok, Preservation Theorems 
concering g-Hausdorf and rg-Hausdorff spaces, 
KKU. Sci.J.31(3)(2003)138-140. 

[7] R.Devi, K. Balachandran and H.Maki, semi-
Generalized Homeomorphisms and Generalized 
semi-Homeomorphismin Topological Spaces, 
IJPAM, 26(3)(1995)271-284. 

[8] W.Dunham, T1/2, Spaces, Kyungpook Math. 
J.17(1977), 161-169 . 

[9] A.I. El-Maghrabi and A.A. Naset, Between 
semi-closed snd GS-closed sets, J.Taibah. Uni. 
Sci. 2(2009)79-87. 

[10] M. Ganster, S. Jafarai and G.B. Navalagi, on 
semi-g-regular and semi-g-normal spaces.  

[11] Jiling Cao, Sina geenwood and Ivan Reilly, 
Generalized closed sets: A Unified Approach. 

[12] Jiling Cao, M. Ganster and Ivan Reily, on sg-
closed sets and gα-closed sets. 

[13] Jin Han Park, On s-normal spaces and some 
functions, IJPAM 30(6)(1999)575-580. 

[14] S.R.Malghan, Generalized closed maps, The J. 
Karnataka Univ. Vol.27(1982)82-88. 

[15] Miguel Caldas and R.K. Saraf, A surve on semi-
T1/2 spaces, Pesquimat, Voil.II, No.1(1999)33-
40. 

[16] Miguel Caldas, R.K. Saraf, A Research on 
characterization of semi-T1/2 spaces, 
Divulgenious, Math.Vol.8,No.1(2000) 43-50. 

[17] G.B. Navalagi, Properties of gs-closed sets and 
sg-closed sets in Topology. 

[18] G. B. Navalagi Semi-Generalized separation in 
Topology. 

[19] Norman Levine, Generalized closed sets in 
topology, Rend. Circ. Mat. Palermo, 19 (2) 
(1970), 89-96. 

[20] T.Noiri, semi-normal spaces and some 
functions, Acta Math. Hungar 65 (3) (1994) 
305-311. 

[21] Kyungpook Math. J. 36 (1996) 183-190. 
[22] T. Noiri and V.Popa, On G-regular spaces and 

some functions, Mem. Fac. Sci. Kochi. 
Univ(Math)20(1999)67-74. 

[23] N. Palaniappan and K. Chandrasekhara rao, 
Regular Generalized closed sets, Kyungpook 
M.J. Vol.33(2)(1993)211-219. 

[24] V.K. Sharma, g-open sets and Almost 
normality, Acta Ciencia Indica, Vol XXXIIIM, 
No.3(2007)1249-1251. 

[25] V.K. Sharma, sg-separation axioms, Acta 
Ciencia Indica, Vol XXXIIIM, 
No.3(2007)1253-1259. 

[26] V.K. Sharma, g-separation axioms, Acta 
Ciencia Indica, Vol XXXIIIM, 
No.4(2007)1271-1276. 

[27] M.K.R.S. Veerakumar, concerning semi T1/3 
spaces. 

[28] M.K.R.S. Veerakumar, pre-semi-closed sets, 
Indian J. Math. Vol 44, No.2(2002)165-181. 

[29] M.K.R.S. Veerakumar, Between closed sets and 
g-closed sets, Mem. Fac. Sci. Kochi. 
Univ(Math)21(2000)01-19. 


